Document Type : Research Paper


Nizhny Novgorod State Technical University, 24 Minin Street, Nizhny Novgorod, 603950, Russia.


In this paper we introduce an approach to increase density of field-effect transistors framework a C-multiplier. Framework the approach we consider manufacturing the inverter in heterostructure with specific configuration. Several required areas of the heterostructure should be doped by diffusion or ion implantation. After that dopant and radiation defects should by annealed framework optimized scheme. We also consider an approach to decrease value of mismatch-induced stress in the considered heterostructure. We introduce an analytical approach to analyze mass and heat transport in heterostructures during manufacturing of integrated circuits with account mismatch-induced stress.


Main Subjects

  1. Wang, Z., Duan, Q., & Roh, J. (2014). A 0.03 mm2 delta-sigma modulator with cascaded-inverter amplifier. Analog integrated circuits and signal processing81(2), 495-501.
  2. Ghaderi, N., Ghol, Z. D., & Fatemi, S. R. (2016). A CMOS 7Gb/s, 4-PAM and 4-PWM, serial link transceiver. Analog integrated circuits and signal processing89(3), 809-823.
  3. Pushkar, K. L. (2018). Electronically controllable quadrature sinusoidal oscillator using VD-DIBAs. Circuits and systems9(3), 41-48.
  4. Amhaz, H., Abdallah, L., Harb, A., Chehadi, A., Al Karim, Y. A., Shawish, A., & Noun, Z. (2018). A stand-alone low-power digital temperature sensor for IC monitoring. International journal of electronic design and test, 1(1), 45-53.
  5. Ageev, O. A., Belyaev, A. E., Boltovets, N. S., Ivanov, V. N., Konakova, R. V., Kudryk, Y., ... & Sachenko, A. V. (2009). Au-TiB x-n-6H-SiC Schottky barrier diodes: specific features of charge transport in rectifying and nonrectifying contact. Semiconductors43(7), 865-871.
  6. Tsai, J. H., Chiu, S. Y., Lour, W. S., & Guo, D. F. (2009). High-performance InGaP/GaAs PnP δ-doped heterojunction bipolar transistor. Semiconductors43(7), 939-942.
  7. Chachuli, S. A. M., Fasyar, P. N. A., Soin, N., Karim, N. M., & Yusop, N. (2014). Pareto ANOVA analysis for CMOS 0.18 µm two-stage Op-amp. Materials science in semiconductor processing24, 9-14.
  8. Ermolovich, I. B., Milenin, V. V., Red’ko, R. A., & Red’ko, S. M. (2009). Specific features of recombination processes in CdTe films produced in different temperature conditions of growth and subsequent annealing. Semiconductors43(8), 980-984.
  9. Sinsermsuksakul, P., Hartman, K., Bok Kim, S., Heo, J., Sun, L., Hejin Park, H., ... & Gordon, R. G. (2013). Enhancing the efficiency of SnS solar cells via band-offset engineering with a zinc oxysulfide buffer layer. Applied physics letters102(5), 053901.
  10. Reynolds, J. G., Reynolds Jr, C. L., Mohanta, A., Muth, J. F., Rowe, J. E., Everitt, H. O., & Aspnes, D. E. (2013). Shallow acceptor complexes in p-type ZnO. Applied physics letters102(15), 152114.
  11. Volokobinskaya, N. I., Komarov, I. N., Matioukhina, T. V., Rechetniko, V. I., Rush, A. A., Falina, I. V., & Yastrebov, A. S. (2001). Investigation of technological processes of manufacturing of the bipolar power high-voltage transistors with a grid of inclusions in the collector region. Semiconductors35(8), 1013-1017.
  12. Pankratov, E. L., & Bulaeva, E. A. (2013). Doping of materials during manufacture p–n-junctions and bipolar transistors; analytical approaches to model technological approaches and ways of optimization of distributions of dopants. Reviews in theoretical science1(1), 58-82.
  13. Kukushkin, S. A., Osipov, A. V., & Romanychev, A. I. (2016). Epitaxial growth of zinc oxide by the method of atomic layer deposition on SiC/Si substrates. Physics of the solid state58(7), 1448-1452.
  14. Trukhanov, E. M., Kolesnikov, A. V., & Loshkarev, I. D. (2015). Long-range stresses generated by misfit dislocations in epitaxial films. Russian microelectronics44(8), 552-558.
  15. Pankratov, E. L., & Bulaeva, E. A. (2015). On optimization of regimes of epitaxy from gas phase; some analytical approaches to model physical processes in reactors for epitaxy from gas phase during growth films. Reviews in theoretical science3(4), 365-398.
  16. Ong, K. K., Pey, K. L., Lee, P. S., Wee, A. T. S., Wang, X. C., & Chong, Y. F. (2006). Dopant distribution in the recrystallization transient at the maximum melt depth induced by laser annealing. Applied physics letters89(17), 172111.
  17. Wang, H. T., Tan, L. S., & Chor, E. F. (2005). Pulsed laser annealing of Be-implanted GaN. Journal of applied physics98(9), 094901.
  18. Bykov, Y. V., Eremeev, A. G., Zharova, N. A., Plotnikov, I. V., Rybakov, K. I., Drozdov, M. N., ... & Skupov, V. D. (2003). Diffusion processes in semiconductor structures during microwave annealing. Radiophysics and quantum electronics46(8), 749-755.
  19. Al-Absi, M. A., Al-Suhaibani, E. S., & Abuelma’atti, M. T. (2017). A new compact CMOS C-multiplier. Analog integrated circuits and signal processing90(3), 653-658.
  20. Zhang, Y. W., & Bower, A. F. (1999). Numerical simulations of island formation in a coherent strained epitaxial thin film system. Journal of the mechanics and physics of solids47(11), 2273-2297.
  21. Landau, L. D., & Lefshits, E. M. (2001). Theoretical physics. 7. Quantum mechanics- methods and applications.
  22. Kitayama, M., Narushima, T., Carter, W. C., Cannon, R. M., & Glaeser, A. M. (2000). The Wulff shape of alumina: I, modeling the kinetics of morphological evolution. Journal of the American ceramic society83(10), 2561-2531.
  23. Kudryavtsev, P. G. (2018). Structure of pores in solid porous bodies. PART I. Nanotekhnologii v Stroitel'stve, 10(5), 80-103.
  24. Brodie, I., & Schwoebel, P. R. (1994). Vacuum microelectronic devices. Proceedings of the IEEE, 82(7), 1006-1034.
  25. Fahey, P. M., Griffin, P. B., & Plummer, J. D. (1989). Point defects and dopant diffusion in silicon. Reviews of modern physics61(2), 289.
  26. Vinetskij, V. L. & Kholodar, G. A. (1979). Radiation physics of semiconductors. Naukova Dumka Edition.
  27. Mynbaeva, M. G., Mokhov, E. N., Lavrent’ev, A. A., & Mynbaev, K. D. (2008). High-temperature diffusion doping of porous silicon carbide. Technical physics letters34(9), 731-733.
  28. Sokolov, Y. D. (1955). About the definition of dynamic forces in the mine lifting. Applied mechanics1(1), 23-35.
  29. Pankratov, E. L. (2007). Dopant diffusion dynamics and optimal diffusion time as influenced by diffusion-coefficient nonuniformity. Russian microelectronics36(1), 33-39.
  30. Pankratov, E. L., & Bulaeva, E. A. (2012). Decreasing of quantity of radiation defects in an implanted-junction rectifiers by using overlayers. International journal of micro-nano scale transport3(3), 119-130.
  31. Pankratov, E. L., & Bulaeva, E. A. (2015). Optimization of manufacturing of emitter-coupled logic to decrease surface of chip. International journal of modern physics B29(05), 1550023.
  32. Pankratov, E. L. (2017). On approach to optimize manufacturing of bipolar heterotransistors framework circuit of an operational amplifier to increase their integration rate. Influence mismatch-induced stress. Journal of computational and theoretical nanoscience14(10), 4885-4899.
  33. Pankratov, E. L., & Bulaeva, E. A. (2015). An approach to increase the integration rate of planar drift heterobipolar transistors. Materials science in semiconductor processing34, 260-268.
  34. Pankratov, E. L., & Bulaeva, E. A. (2014). An approach to manufacture a heterobipolar transistors in thin film structures. On the method of optimization. International journal of micro-nano scale transport4(1), 17-31.
  35. Pankratov, E. L. (2011). Increasing of the sharpness of p–n junctions by laser pulses. Nano6(01), 31-40.