Document Type : Research Paper

Authors

1 South African Government, Department of Science and Innovation, Tshwane University of Technology, South Africa.

2 Department of Physics and Astronomy, Botswana International University of Science and Technology, Palapye, Botswana.

10.22105/riej.2021.314637.1265

Abstract

All engineering graduates must possess specific essential competencies when leaving universities to transition to the industry or be successful in the world of work. This paper adopts a literature review approach to synthesise available secondary data regarding creating harmony among engineering disciplines. It uses the illustration of a vending machine to indicate how various engineering disciplines could be harmonised through the Learning Factory platform. Moreover, it provides some ideas for harmonising engineering disciplines. The main findings of this work suggest that the Learning Factory concept is a critical ideology that is worth implementing, especially by developing. The Learning Factory environment can produce well-rounded graduates capable of applying technical and non-technical skills to solve community challenges, including being entrepreneurial and innovative to drive economic growth and development. The paper concludes by providing insights demonstrating that the concept of a Learning Factory can also be utilized for addressing other engineering and industrial-related challenges.

Keywords

Main Subjects

  1. Yadav, A., Subedi, D., Lundeberg, M. A., & Bunting, C. F. (2011). Problem‐based learning: Influence on students' learning in an electrical engineering course. Journal of engineering education100(2), 253-280. https://doi.org/10.1002/j.2168-9830.2011.tb00013.x
  2. Flegg, J., Mallet, D., & Lupton, M. (2012). Students' perceptions of the relevance of mathematics in engineering. International journal of mathematical education in science and technology43(6), 717-732. https://doi.org/10.1080/0020739X.2011.644333
  3. Narayan-Parker, D. (2002). Empowerment and poverty reduction: a sourcebook. World Bank Publications.
  4. Wahid, A., Ahmad, M. S., Talib, N. B. A., Shah, I. A., Tahir, M., Jan, F. A., & Saleem, M. Q. (2017). Barriers to empowerment: assessment of community-led local development organizations in Pakistan. Renewable and sustainable energy reviews74, 1361-1370. https://doi.org/10.1016/j.rser.2016.11.163
  5. Xu, K. (2008). Engineering education and technology in a fast-developing China. Technology in society30(3-4), 265-274. https://doi.org/10.1016/j.techsoc.2008.04.024
  6. Jowitt, P. (2010). Engineering, innovation, social and economic development. Engineering: Issues, challenges and opportunities for development.
  7. Contractor, N. S., & Monge, P. R. (2002). Managing knowledge networks. Management communication quarterly16(2), 249-258. https://doi.org/10.1177/089331802237238
  8. Finkelstein, A. (2000). Identifying and incorporating stakeholders in requirements engineering. Magazine of department of computer science. University College London.
  9. Baskerville, R., & Dulipovici, A. (2006). The theoretical foundations of knowledge management. Knowledge management research & practice4(2), 83-105. https://doi.org/10.1057/palgrave.kmrp.8500090
  10. Howard, S. K., Calvo, R. A., & Hussain, M. S. (2013, December). Driving curriculum and technological change to support writing in the engineering disciplines. IEEE 5th conference on engineering education (ICEED) (pp. 103-108). IEEE. DOI: 1109/ICEED.2013.6908312
  11. Birch, D., Liang, H., Kelly, P. H., Mullineux, G., Field, T., Ko, J., & Simondetti, A. (2014). Multidisciplinary engineering models: methodology and case study in spreadsheet analytics. arXiv. arXiv:1401.4582
  12. Mordinyi, R., Winkler, D., Waltersdorfer, F., Scheiber, S., & Biffl, S. (2015, January). Integrating heterogeneous engineering tools and data models: a roadmap for developing engineering system architecture variants. International conference on software quality(pp. 89-107). Springer, Cham. https://doi.org/10.1007/978-3-319-13251-8_6
  13. Craig, K. (2016). Innovating the engineering education model. Retrieved July 20, 2021 from http://www.machinedesign.com/contributing-technical-experts/innovating-engineering-education-model
  14. Zheng, C., Bricogne, M., Le Duigou, J., Hehenberger, P., & Eynard, B. (2018). Knowledge-based engineering for multidisciplinary systems: integrated design based on interface model. Concurrent engineering26(2), 157-170. https://doi.org/10.1177/1063293X17734591
  15. Wagner, U., AlGeddawy, T., ElMaraghy, H., & MŸller, E. (2012). The state-of-the-art and prospects of learning factories. Procedia CiRP, 3, 109-114. https://doi.org/10.1016/j.procir.2012.07.020
  16. Tisch, M., Hertle, C., Cachay, J., Abele, E., Metternich, J., & Tenberg, R. (2013). A systematic approach on developing action-oriented, competency-based Learning Factories. Procedia CIRP7, 580-585. https://doi.org/10.1016/j.procir.2013.06.036
  17. Kreimeier, D., Morlock, F., Prinz, C., Krückhans, B., Bakir, D. C., & Meier, H. (2014). Holistic learning factories–a concept to train lean management, resource efficiency as well as management and organization improvement skills. Procedia Cirp17, 184-188. https://doi.org/10.1016/j.procir.2014.01.040
  18. Tisch, M., Abele, E., & Metternich, J. (2019). The variety of learning factory concepts. Inlearning factories (pp.99-125).  Springer Cham. https://doi.org/10.1007/978-3-319-92261-4_5
  19. Gento, A. M., Pimentel, C., & Pascual, J. A. (2021). Lean school: an example of industry-university collaboration. Production planning & control32(6), 473-488. https://doi.org/10.1080/09537287.2020.1742373
  20. Berić, D., Stefanović, D., Lalić, B., & Ćosić, I. (2018). The implementation of ERP and MES Systems as a support to industrial management systems. International journal of industrial engineering and management (IJIEM), 9(2), 77-86.
  21. Darun, M. R., Al Adresi, A., Turi, J. A., & Ghazali, M. (2020). Integrating blockchain technology for air purifier production system at FIM learning factory. International journal of control and automation13(2), 1112-1117.
  22. Tisch, M., Ranz, F., Abele, E., Metternich, J., & Hummel, V. (2015). Learning factory morphology–study of form and structure of an innovative learning approach in the manufacturing domain. The Turkish online journal of educational technology. https://d-nb.info/1129262421/34
  23. Malele, V., Mpofu, K., & Muchie, M. (2017, June). Lesson learned from exposing Computer Systems Engineering students to entrepreneurship and innovation activities. Proceedings of the fourth biennial conference of the South African society for engineering education (SASEE) (p.1-441).
  24. Lamancusa, J. S., Zayas, J. L., Soyster, A. L., Morell, L., & Jorgensen, J. (2008). 2006 Bernard M. Gordon Prize Lecture*: The Learning Factory: Industry‐Partnered Active Learning. Journal of engineering education97(1), 5-11. https://doi.org/10.1002/j.2168-9830.2008.tb00949.x
  25. Veres, M. M., Veres, C., Rauca, A. M., Marian, L. O., & Sigmirean, A. (2021). Research on qualified vocational training development in the context of digitalization. Multidisciplinary digital publishing institute proceedings, 63(1), 68. https://doi.org/10.3390/proceedings2020063068
  26. Abele, E., Metternich, J., Tisch, M., Chryssolouris, G., Sihn, W., ElMaraghy, H., ... & Ranz, F. (2015). Learning factories for research, education, and training. Procedia CiRp32, 1-6. https://doi.org/10.1016/j.procir.2015.02.187
  27. Tisch, M., Hertle, C., Abele, E., Metternich, J., & Tenberg, R. (2016). Learning factory design: a competency-oriented approach integrating three design levels. International journal of computer integrated manufacturing29(12), 1355-1375. https://doi.org/10.1080/0951192X.2015.1033017
  28. Sackey, S. M., Bester, A., & Adams, D. (2017). Industry 4.0 learning factory didactic design parameters for industrial engineering education in South Africa. South African journal of industrial engineering28(1), 114-124. https://hdl.handle.net/10520/EJC-796a39a54
  29. Van der Merwe, A., Hummel, V., & Matope, S. (2016). The learning factory: a didactic platform for knowledge transfer in South Africa. Faculty of Engineering, Department of Industrial Engineering, Stellenbosch University.
  30. Baena, F., Guarin, A., Mora, J., Sauza, J., & Retat, S. (2017). Learning factory: The path to industry 4.0. Procedia manufacturing9, 73-80.
  31. Abele, E., Chryssolouris, G., Sihn, W., Metternich, J., ElMaraghy, H., Seliger, G., ... & Seifermann, S. (2017). Learning factories for future oriented research and education in manufacturing. CIRP annals66(2), 803-826. https://doi.org/10.1016/j.cirp.2017.05.005
  32. Zata, N. M., van Niekerk, T. I., & Fernandes, J. M. (2016). A process control learning factory with a plant simulation integrated to industry standard control hardware. 2016 pattern recognition association of South Africa and robotics and mechatronics international conference (PRASA-RobMech) (pp. 1-8). IEEE. DOI: 1109/RoboMech.2016.7813175
  33. Blanchard, N. P., & Thacker, J. W (2009). Effective training, systems, strategies, and practices. Pearson College Div.
  34. Barghash, M., Al-Qatawneh, L., Ramadan, S., & Dababneh, A. (2017). Analytical hierarchy process applied to supermarket layout selection. Journal of applied research on industrial engineering4(4), 215-226. DOI: 22105/jarie.2017.54706
  35. Łyp-Wrońska, K., & Tyczyński, B. (2018). Analysis of the 5S method in production enterprise-case study. MATEC Web of Conferences(Vol. 183, p. 01016). EDP Sciences.
  36. Debnath, S. (2021). Fuzzy hypersoft sets and its weightage operator for decision making. Journal of fuzzy extension and applications2(2), 163-170. DOI: 22105/jfea.2021.275132.1083