Document Type : Research Paper


Department of Mathematics, Wollega University, Nekemte, Ethiopia.


In this paper, optimal control theory is applied to Human Papillomavirus (HPV) and Human immunodeficiency viruses (HIV) coinfection model given by using a system of ordinary differential equations. Optimal control strategy was employed to study the effect of combining various intervention strategies on the transmission dynamics of HPV-HIV coinfection diseases. The necessary conditions for the existence of the optimal controls were established using Pontryagin’s Maximum Principle. Optimal control system was performed with help of Runge-Kutta forward-backward sweep numerical approximation method. Finally, numerical simulation illustrated that a combination of prevention, screening and treatment is the most effective strategy to minimize the disease from the community.


Main Subjects

  1. Milner, D. A. (2019). Diagnostic pathology: infectious diseases E-Book. Elsevier Health Sciences.
  2. Bergot, A. S., Kassianos, A., Frazer, I. H., & Mittal, D. (2011). New approaches to immunotherapy for HPV associated cancers. Cancers3(3), 3461-3495.
  3. Lowy, D. R., & Schiller, J. T. (2006). Prophylactic human papillomavirus vaccines. The journal of clinical investigation116(5), 1167-1173.
  4. World Health Organization. (2017). WHO list of priority medical devices for cancer management. World Health Organization.
  5. Skinner, S. R., Apter, D., De Carvalho, N., Harper, D. M., Konno, R., Paavonen, J., ... & Struyf, F. (2016). Human papillomavirus (HPV)-16/18 AS04-adjuvanted vaccine for the prevention of cervical cancer and HPV-related diseases. Expert review of vaccines15(3), 367-387.
  6. Wodarz, D. (2007). Killer cell dynamics(Vol. 32). Springer Science+ Business Media, LLC.
  7. Nowak, M., & May, R. M. (2000). Virus dynamics: mathematical principles of immunology and virology: mathematical principles of immunology and virology. Oxford University Press, UK.
  8. Green, D., Kharono, B., Tordoff, D. M., Akullian, A., Bershteyn, A., Morrison, M., ... & Drain, P. (2019). Demographic and risk group heterogeneity across the UNAIDS 90-90-90 targets: a systematic review and meta-analysis protocol. Systematic reviews8(1), 1-7.
  9. Polaczek, M. M., Zych, J., Oniszh, K., Szopiński, J., Grudny, J., & Roszkowski-Śliż, K. (2014). Pneumocystis pneumonia in HIV-infected patients with cytomegalovirus co-infection, two case reports and a literature review. Advances in respiratory medicine82(5), 458-466.
  10. Kalipeni, E., Craddock, S., Oppong, J. R., & Ghosh, J. (2004). HIV and AIDS in Africa: beyond epidemiology. Blackwell Publishing.
  11. Gurmu, E. D., Bole, B. K., & Koya, P. R. (2020). Mathematical model for co-infection of HPV with cervical cancer and HIV with AIDS diseases. International journal of scientific research in mathematical and statistical sciences7(2), 107-121.
  12. Fleming, W. H., & Rishel, R. W. (1975). Deterministic and stochastic optimal control. Springer.
  13. Kumar, A., Srivastava, P. K., Dong, Y., & Takeuchi, Y. (2020). Optimal control of infectious disease: Information-induced vaccination and limited treatment. Physica A: statistical mechanics and its applications542, 123196.
  14. Pontryagin, L. S. (1987). Mathematical theory of optimal processes. CRC press.
  15. Romero-Leiton, J. P., Montoya-Aguilar, J. M., & Ibargüen-Mondragón, E. (2018). An optimal control problem applied to malaria disease in Colombia. Applied mathematical sciences12(6), 279-292.
  16. Panetta, J. C., & Fister, K. R. (2000). Optimal control applied to cell-cycle-specific cancer chemotherapy. SIAM journal on applied mathematics60(3), 1059-1072.