Document Type : Research Paper

Authors

1 Young Researchers and Elite Club, Arak Branch, Islamic Azad University, Arak, Iran.

2 Department of Industrial Engineering, Islamic Azad University of Arak, Arak, Iran.

10.22105/riej.2021.271276.1185

Abstract

Layout design problem is one of the useful field of study used to increase the efficiency of sources in organizations. In order to achieve an appropriate layout design, it is necessary to define and solve the related nonlinear programming problems. Therefore, using computer in solving the related problems is important in the view of the researchers of this area of study. However, the designs produced by a computer to solve big problems require more time, so, this paper suggests an algorithm that can be useful in better performance of the known algorithms such as Branch and Bound. The proposed study aims to improve the performance of the branch and bound (BB) algorithm in solving QAP problems. The findings show that the proposed method enables the BB algorithm to produce an optimal solution in the minimum amount of time.

Keywords

Main Subjects

  • Koopmans, T. C., & Beckmann, M. (1957). Assignment problems and the location of economic activities. Econometrica: journal of the econometric society, 25(1), 53-76. https://doi.org/10.2307/1907742
  • Azadivir, F., & Wang, J. (2000). Dynamic facility layout design using simulation and genetic algorithms. International journal of production research38, 4369-4383.
  • Tompkins, J. A., White, J. A., Bozer, Y. A., & Tanchoco, J. M. A. (2010). Facilities planning. John Wiley & Sons.
  • Baykasoglu, A., Dereli, T., & Sabuncu, I. (2006). An ant colony algorithm for solving budget constrained and unconstrained dynamic facility layout problems. Omega34(4), 385-396. https://doi.org/10.1016/j.omega.2004.12.001
  • Azadivar, F., & Wang, J. (2000). Facility layout optimization using simulation and genetic algorithms. International journal of production research38(17), 4369-4383. https://doi.org/10.1080/00207540050205154
  • Lim, W. L., Wibowo, A., Desa, M. I., & Haron, H. (2016). A biogeography-based optimization algorithm hybridized with tabu search for the quadratic assignment problem. Computational intelligence and neuroscience2016, https://doi.org/10.1155/2016/5803893
  • Christofides, N., & Benavent, E. (1989). An exact algorithm for the quadratic assignment problem on a tree. Operations research37(5), 760-768. https://doi.org/10.1287/opre.37.5.760
  • Bazaraa, M. S., & Sherali, H. D. (1980). Benders' partitioning scheme applied to a new formulation of the quadratic assignment problem. Naval research logistics quarterly27(1), 29-41. https://doi.org/10.1002/nav.3800270104
  • Mautor, T., & Roucairol, C. (1994). A new exact algorithm for the solution of quadratic assignment problems. Discrete applied mathematics55(3), 281-293. https://doi.org/10.1016/0166-218X(94)90014-0
  • Al-Hakim, L. (2000). On solving facility layout problems using genetic algorithms. International journal of production research38(11), 2573-2582. https://doi.org/10.1080/00207540050031922
  • Stützle, T. (2006). Iterated local search for the quadratic assignment problem. European journal of operational research174(3), 1519-1539. https://doi.org/10.1016/j.ejor.2005.01.066
  • Hicks, C. (2006). A Genetic Algorithm tool for optimising cellular or functional layouts in the capital goods industry. International journal of production economics104(2), 598-614. https://doi.org/10.1016/j.ijpe.2005.03.010
  • Mak, K. L., Wong, Y. S., & Chan, F. T. S. (1998). A genetic algorithm for facility layout problems. Computer integrated manufacturing systems11(1-2), 113-127. https://doi.org/10.1016/S0951-5240(98)00018-4
  • Pichka, K., Ashjari, B., Ziaeifar, A., & Nickbeen, P. (2014). Open vehicle routing problem optimization under realistic assumptions. International journal of research in industrial engineering3(2), 46-55.
  • Moradi, N., & Shadrokh, S. (2019). A simulated annealing optimization algorithm for equal and un-equal area construction site layout problem. International journal of research in industrial engineering8(2), 89-104. DOI: 22105/RIEJ.2019.169867.1073
  • Jafari, H., Ehsanifar, M., & Sheykhan, A. (2020). Finding optimum facility’s layout by developed simulated annealing algorithm. International journal of research in industrial engineering9(2), 172-182. DOI: 22105/RIEJ.2020.218913.1119
  • Shadkam, E., & Ghavidel, F. (2021). Presentation and implementation multi-objective mathematical models to balance the assembly line. International journal of research in industrial engineering10(1), 56-66.
  • Kane, L., Sidibe, H., Kane, S., Bado, H., Konate, M., Diawara, D., & Diabate, L. (2021). A simplified new approach for solving fully fuzzy transportation problems with involving triangular fuzzy numbers. Journal of fuzzy extension and applications2(1), 89-105.
  • Zanjani, B., Amiri, M., Hanafizadeh, P., & Salahi, M. (2021). Robust multi-objective hybrid flow shop scheduling. Journal of applied research on industrial engineering8(1), 40-55. DOI: 22105/JARIE.2021.252651.1202
  • Land, A. H., & Doig, A. G. (1960). An automatic method of solving discrete programming problems. Econometrica, 28(3), 497-520. https://www.jstor.org/stable/1910129