[1] Ryan, T. P. (2011). Statistical methods for quality improvement. John Wiley & Sons.
[2] Kane, V. E. (1986). Process capability indices. Journal of quality technology, 18(1), 41-52.
[3] Kotz, S., & Johnson, N. L. (1993). Process capability indices. CRC press.
[4] English, J. R., & Taylor, G. D. (1993). Process capability analysis—a robustness study. The international journal of production research, 31(7), 1621-1635.
[5] Kotz, S., & Johnson, N. L. (2002). Process capability indices—a review, 1992–2000. Journal of quality technology, 34(1), 2-19.
[6] Chen, K. S., Huang, M. L., & Hung, Y. (2008). Process capability analysis chart with the application of Cpm. International journal of production research, 46(16), 4483-4499.
[7] Wu, C. W., Pearn, W. L., & Kotz, S. (2009). An overview of theory and practice on process capability indices for quality assurance. International journal of production economics, 117(2), 338-359.
[8] Yum, B. J., & Kim, K. W. (2011). A bibliography of the literature on process capability indices: 2000–2009. Quality and reliability engineering international, 27(3), 251-268.
[9] Chen, K. S., Wang, K. J., & Chang, T. C. (2017). A novel approach to deriving the lower confidence limit of indices C pu, C pl, and C pk in assessing process capability. International journal of production research, 55(17), 4963-4981.
[10] Clements, J. A. (1989). Process capability calculations, for non-normal distributions. Quality progress, 22(9), 95-100.
[11] Pearn, W. L., & Chen, K. S. (1995). Estimating process capability indices for non‐normal pearsonian populations. Quality and reliability engineering international, 11(5), 386-388.
[12] Shore, H. (1998). A new approach to analysing non-normal quality data with application to process capability analysis. International journal of production research, 36(7), 1917-1933.
[13] Chen, J. P. (2000). Re-evaluating the process capability indices for non-normal distributions. International journal of production research, 38(6), 1311-1324.
[14] Goswami, A., & Dutta, H. N. (2013). Some studies on normal and non-normal process capability indices. Int. j. math. stat. invent, 1(2), 31-40.
[15] Borges, W. D. S., & Ho, L. L. (2001). A fraction defective based capability index. Quality and reliability engineering international, 17(6), 447-458.
[16] Yeh, A. B., & Bhattcharya, S. (1998). A robust process capability index. Communications in statistics-simulation and computation, 27(2), 565-589.
[17] Perakis, M., & Xekalaki, E. (2002). A process capability index that is based on the proportion of conformance. Journal of statistical computation and simulation, 72(9), 707-718.
[18] Perakis, M., & Xekalaki, E. (2005). A process capability index for discrete processes. Journal of statistical computation and simulation, 75(3), 175-187.
[19] Maiti, S.S., Saha, M., & Nanda, A.K. (2010). On generalising process capability indices. Journal of quality technology and quantitative management,7(3), 279-300.
[20] Montgomery, D.C. (2009). Introduction to statistical process control, 6th edition. Jefferson City, USA: John Wiley & Sons, Inc.
[21] Maravelakis, P. E. (2016). Process capability indices for data following the Poisson or binomial distribution. Quality technology & quantitative management, 13(2), 197-206.
[22] Sematech, N. I. S. T. (2012). NIST/SEMATECH e-handbook of statistical methods, http://www.itl.nist.gov/div898/handbook/