Modified solution for neutrosophic linear programming problems with mixed constraints

Document Type: Research Paper

Authors

1 Department of Mathematics, National Institute of Technology Jamshedpur, India.

2 Department of Computer Science and Engineering, SRM University-AP, Amravati, India.

Abstract

Neutrosophic Linear Programming (NLP) issues is presently extensive applications in science and engineering. The primary commitment right now to manage the NLP problem where the coefficients are neutrosophic triangular numbers with blended requirements. The current method [20] are viewed as just imbalance limitations. Notwithstanding, in our paper, we consider both blended requirements and utilize another score function to understand the strategy. To determine the progression of the current method, another strategy is proposed for tackling NLP issues. To check the better outcome, we execute various numerical models.

Keywords

Main Subjects


[1]      Zadeh, L. A. (1965). Fuzzy sets. Information and control8(3), 338-353.

[2]      Mahdavi-Amiri, N., & Nasseri, S. H. (2006). Duality in fuzzy number linear programming by use of a certain linear ranking function. Applied mathematics and computation180(1), 206-216.

[3]      Hashemi, S. M., Modarres, M., Nasrabadi, E., & Nasrabadi, M. M. (2006). Fully fuzzified linear programming, solution and duality. Journal of intelligent & fuzzy systems17(3), 253-261.

[4]      Das, S. K., Mandal, T., & Edalatpanah, S. A. (2017). A mathematical model for solving fully fuzzy linear programming problem with trapezoidal fuzzy numbers. Applied intelligence46(3), 509-519.

[5]      Das, S. K., Mandal, T., & Behera, D. (2019). A new approach for solving fully fuzzy linear programming problem. International journal of mathematics in operational research15(3), 296-309.

[6]      Das, S. K., Mandal, T., & Edalatpanah, S. A. (2017). A mathematical model for solving fully fuzzy linear programming problem with trapezoidal fuzzy numbers. Applied intelligence46(3), 509-519.

[7]      Das, S. K., & Mandal, T. (2017). A new model for solving fuzzy linear fractional programming problem with ranking function. Journal of applied research on industrial engineering4(2), 89-96.

[8]      Das, S. K., & Mandal, T. (2017). A MOLFP method for solving linear fractional programming under fuzzy environment. International journal of research in industrial engineering6(3), 202-213.

[9]      Das, S. K. (2017). Modified method for solving fully fuzzy linear programming problem with triangular fuzzy numbers. International journal of research in industrial engineering6(4), 293-311.

[10]   Najafi, H. S., & Edalatpanah, S. A. (2013). A note on “A new method for solving fully fuzzy linear programming problems”. Applied mathematical modelling37(14-15), 7865-7867.

[11]   Najafi, H. S., Edalatpanah, S. A., & Dutta, H. (2016). A nonlinear model for fully fuzzy linear programming with fully unrestricted variables and parameters. Alexandria engineering journal55(3), 2589-2595.

[12]   Smarandache, F. (2010). Strategy on T, I, F Operators. A kernel infrastructure in neutrosophic logic. In F. Smarandache (Ed.), Multispace and multistructure. neutrosophic transdisciplinariry (100 collected papers of sciences) (pp. 414-419). Hanko: NESP.

[13]   Edalatpanah, S. A. (2019). A nonlinear approach for neutrosophic linear programming. J. Appl. Res. Ind. Eng6(4), 367-373.

[14]   Edalatpanah, S. A. (2020). A direct model for triangular neutrosophic linear programming. International journal of neutrosophic science1(1), 19-28.

[15]   Abdel-Baset, M., Gunasekaran, M., Mohamed, M., & Smarandache, F. (2019). A novel method for solving the fully neutrosophic linear programming problems. Neural computing and applications31(5), 1595-1605.

[16]   Abdel-Baset, M., Hezam, I. M., & Smarandache, F. (2016). Neutrosophic goal programming. Neutrosophic sets & systems11, 25-34.

[17]   Maiti, I., Mandal, T., & Pramanik, S. (2019). Neutrosophic goal programming strategy for multi-level multi-objective linear programming problem. Journal of ambient intelligence and humanized computing, 1-12.

[18]   Pramanik, S., & Dey, P. P. (2019). Multi-level linear programming problem with neutrosophic numbers: A goal programming strategy. Neutrosophic sets & systems29.

[19]   Pramanik, S., Mallick, R., & Dasgupta, A. (2018). Neutrosophic goal geometric programming problem based on geometric mean method and its application. Neutrosophic sets and systems20(1), 11.

[20]   Hussian, A. N., Mohamed, M., Abdel-Baset, M., & Smarandache, F. (2017). Neutrosophic linear programming problems. Infinite study.

[21]   Zimmermann, H. J. (1978). Fuzzy programming and linear programming with several objective functions. Fuzzy sets and systems1(1), 45-55.

[22]   Tanaka, H. (1984). A formulation of fuzzy linear programming problem based on comparison of fuzzy numbers. Control and cybernetics13, 185-194.

[23]   Campos, L., & Verdegay, J. L. (1989). Linear programming problems and ranking of fuzzy numbers. Fuzzy sets and systems32(1), 1-11.

[24]   Rommelfanger, H., Hanuscheck, R., & Wolf, J. (1989). Linear programming with fuzzy objectives. Fuzzy sets and systems29(1), 31-48.

[25]   Cadenas, J. M., & Verdegay, J. L. (1997). Using fuzzy numbers in linear programming. IEEE Transactions on systems, Man, and cybernetics, Part B (Cybernetics)27(6), 1016-1022.

[26]   Buckley, J. J., & Feuring, T. (2000). Evolutionary algorithm solution to fuzzy problems: fuzzy linear programming. Fuzzy sets and systems109(1), 35-53.

[27]   Ramik, J., & Vlach, M. (2002). Fuzzy mathematical programming: a unified approach based on fuzzy relations. Fuzzy optimization and decision making1(4), 335-346.

[28]   Kumar, A., Kaur, J., & Singh, P. (2011). A new method for solving fully fuzzy linear programming problems. Applied mathematical modelling35(2), 817-823.

[29]   Edalatpanah, S. A., & Shahabi, S. (2012). A new two-phase method for the fuzzy primal simplex algorithm. International review of pure and applied mathematics8(2), 157-164.

[30]   Kaur, J., & Kumar, A. (2012). Exact fuzzy optimal solution of fully fuzzy linear programming problems with unrestricted fuzzy variables. Applied intelligence37(1), 145-154.

[31]   Baykaso─člu, A., & Subulan, K. (2015). An analysis of fully fuzzy linear programming with fuzzy decision variables through logistics network design problem. Knowledge-based systems90, 165-184.

[32]   Dehghan, M., Hashemi, B., & Ghatee, M. (2006). Computational methods for solving fully fuzzy linear systems. Applied mathematics and computation179(1), 328-343.

[33]   Lotfi, F. H., Allahviranloo, T., Jondabeh, M. A., & Alizadeh, L. (2009). Solving a full fuzzy linear programming using lexicography method and fuzzy approximate solution. Applied mathematical modelling33(7), 3151-3156.

[34]   Allahviranloo, T., Lotfi, F. H., Kiasary, M. K., Kiani, N. A., & Alizadeh, L. (2008). Solving fully fuzzy linear programming problem by the ranking function. Applied mathematical sciences2(1), 19-32.

[35]   Atanassov, K. T. (1994). New operations defined over the intuitionistic fuzzy sets. Fuzzy sets and systems61(2), 137-142.

[36]   Pramanik, S. (2016). Neutrosophic multi-objective linear programming. Global journal of engineering science and research management3(8), 36-46.

[37]   Mohamed, M., Abdel-Basset, M., Zaied, A. N. H., & Smarandache, F. (2017). Neutrosophic integer programming problem. Infinite Study.