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A B S T R A C T 
In this paper we construct Non-Standard finite difference schemes (NSFD) for numerical solution 

of nonlinear Lane-Emden type equations which are nonlinear ordinary dierential equations on semi-

infinite domain. They are categorized as singular initial value problems. This equation describes a 

variety of phenomena in theoretical physics and astrophysics.  The presented schemes are obtained 

by using the Non-Standard finite difference method. The use of NSFD method and its 

approximations play an important role for the formation of stable numerical methods. The main 

advantage of the schemes is that the algorithm is very simple and very easy to implement. Thus, this 

method may be applied as a simple and accurate solver for ODEs and PDEs and it can also be 

utilized as an accurate algorithm to solve linear and nonlinear equations arising in physics and other 

fields of applied mathematics. Illustrative examples have been discussed to demonstrate validity and 

applicability of the technique and the results have been compared with the exact solutions. 
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1. Introduction  

Lane–Emden type equations have significant applications in many fields of scientific and 

technical world. One of the important fields of application of the Lane-Emden equation is the 

analysis of the diffusive transport and chemical reaction of species inside a porous catalyst 

particle. These equations describe the temperature variation of a spherical gas cloud under the 

mutual attraction of its molecules and subject to the laws of classical thermodynamics. The 

polytrophic theory of stars essentially follows out of thermodynamic considerations that deal 

with the issue of energy transport, through the transfer of material between different levels of 
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the star. This equation is one of the basic equations in the theory of stellar structure. The 

general form of the Lane-Emden equation is as follows:  

),(),()()( ''' xgyxfxy
x

m
xy    ,10 x   0m ,   (1) 

with the following initial conditions: 

)2(                                                                                                               .)0(' By  ,)0( Ay   

),( yxf is a continuous real-value function and )(xg  is an analytical function. This equation 

has been the focus of many studies.  H. Aaminikhah and S. Moradian [1] solved Lane-Emden 

type equations by the Legendre wavelet method. Liao [2] solved this equation by applying a 

homotopy analysis method. He [3] obtained an approximate analytical solution of the Lane-

Emden equation by applying a variational approach. Bender et al. [4] proposed a new 

perturbation technique. Shawagfeh [5] and Wazwaz [6, 7] solve this equation by applying the 

Adomian method which provides a convergent series solution. Ramos [8] presented a series 

approach to the Lane-Emden equation. Parand et al. [9–12] presented three numerical 

techniques to solve higher ordinary differential equations such as Lane-Emden. El-Gebeily 

and O’Regan [13] used the quasilinearization approach to solve the standard Lane-Emden 

equation. Mandelzweig and Tabakin [14] applied Bellman and Kalaba’s quasilinearization 

method, and Ramos [15] used a piecewise linearization technique based on the piecewise 

linearization of the Lane-Emden equation. Bozkhov and Gilli Martins [16] and later 

Momoniat and Harley [17] applied the Lie Group method to generalized Lane-Emden 

equations of the first kind. Özis and Yildirim [18, 19] gave the solutions of a class of singular 

second-order IVPs of Lane-Emden type by using homotopy perturbation and variational 

iteration method. In this paper, the new NSFD schemes will be introduced for numerical 

solutions of Lane-Emden type equations.  

 

2. Non-Standard Finite Difference Method 

The fundamental of the Non-Standard finite difference method was first developed by 

Ronald Mickens [20-24]. The NSFD schemes have been used as a good method for solving 

many problems [25-29]. This method is based on two rules [22]: 

i. The discrete first-order derivative must take a more general form than that used in standard 

discretization, i.e.,  

                                                                                 (3) 
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where )(h  and )(h  are known, respectively, as the numerator and denominator functions, 

having the properties 

                ),(1)( hOh   ),()( 2hOhh                                                               (4)                                                                                      

where ,xh  ,hkxx k  and .)( kyxy   The second-order derivative discrete in the 

following form.  
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where 

).()( 42 hOhh                                                                                                                    (6) 

ii. Both linear and nonlinear terms involving the dependent variable may require  

     " nonlocal " discretization; for example  
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The full details of these procedures are given in [20-24]. In this work we apply NSFD 

schemes for solving Lane-Emden type equations.  

 

 

3. Numerical Results  

 

In this section we construct the NSFD schemes to obtain numerical solution for Lane-

Emden type equations. 

 

Example 1. Consider the following nonlinear Lane-Emden type equation. 

,0)()(
2

)( '''  xyxy
x

xy n
 ,10 x                                                                                     (8) 

Subject to the initial conditions: 
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)9(                                                                                                                       ,0)0(' y,1)0( y  

where 0n  is constant. Substituting ,0n 1 and 5 in to (8) leads to the exact solution 
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For 0n  we have  
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For solving (11) we construct the following NSFD scheme. 
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After some manipulation we have                   
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In this example the denominator functions for first and second order derivative are  

,
3

1
)(

3he
h


 ),

2
(sin4)( 2 h

h                                                                                            (14) 

Respectively, note that )(h and )(h satisfied relations (4) and (6). The numerator function 

chose as .1)( h  In figure 1 the results of scheme (13) is compared with the exact solution.  

 

For 1n  we have  
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Fig 1. The results of NSFD scheme (13) with h=0.01 and exact solution of equation (11). 

In this example we choose denominator functions as follows. 
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Therefore, we have the following NSFD scheme for solving (15). 
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In Fig. 2 the result of scheme (17) is compared with the exact solution. For 5n  we have  
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For solving (18) we construct the following NSFD scheme. 
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Solving (19) in 1ky  yield: 
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In Fig. 3 the result of scheme (20) was compared with the exact solution. 

Example 2. Consider the following nonlinear Lane-Emden type equation. 
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The exact solution of (21) is  

)22(                                                                                                                       .)( 34 xxxy  

For solving (21) we have 

         

        Fig 2. The results of NSFD scheme (17) with h=0.01 and exact solution of equation (15). 
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In this case we choose )(h and )(h as follows: 
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Fig 3. The results of NSFD scheme (20) with h=0.01 and exact solution of equation (18). 
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Fig 4. The results of NSFD scheme (24) with h=0.01 and Exact solution of equation (21). 

 

Example 3. Consider the following nonlinear Lane-Emden type equation 
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The exact solution of (26) is 
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For solving (26) by NSFD method we have 
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where )(h and )(h  are  
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In Fig.5 the result of scheme (29) is compared with the exact solution.  

 

Figure 5. The results of NSFD scheme (29) with h=0.01 and Exact solution of equation (26). 

 

 

4. Conclusion 

In this paper we have presented Non-Standard finite difference schemes for numerical 

solution of Lane-Emden equation which is a second order nonlinear ODE. These schemes are 

explicit. Our results are compared with the exact solutions. From the graphical results in 

figures, it is clear that the approximate solutions are in good agreement with the exact 

solutions. 
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