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A B S T R A C T 

This paper is an extension of the well-known vehicle routing problem (VRP) consisting of two 

stages. The first and second stages deal with the vehicle routing and transportation problems, 

respectively. Waste collection is one of the applications of the considered problem in a real world 

situation. A new mathematical model for this type of the problem is presented that minimizes the 

waste collection cost and decreases the risk posed to the environment for hazardous wastes 

transportation simultaneously. According to the NP-hard nature of the problem, a new multi-

objective hybrid cultural and genetic algorithm (MOHCG) is proposed to obtain Pareto solutions. A 

straightforward representation for coding the given model is proposed to help us in reducing the 

computational time. To validate the proposed algorithm, a number of test problems are conducted 

and the obtained results are compared with the results of the well-known multi-objective 

evolutionary algorithm, namely non-dominated sorting genetic algorithm (NSGA-II), with respect to 

some comparison metrics. Finally, the conclusion is provided. 

Keywords:  Waste collection, transportation vehicle routing, multi-objective optimization, cultural 

algorithm. 
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1. Introduction  

A wastes collection problem is one of the most important problems in logistics management. 

Golden et al. [1] introduced this problem as the one of the main applications of a vehicle 

routing problem (VRP). Sbihi and Eglese [2] introduced the waste collection problem as the 

one part of green logistics and divided waste collection into two segments, namely hazardous 

waste transportation and roll-on/roll-off problems. Also, Lin et al. [3] surveyed a waste 

collection problem and considered it as a subset of the VRP in reverse logistics (VRPRL). 

Reverse logistics has received close attention in recent years. Dekker et.al [4] defined the 

reverse logistics as: '' The process of planning, implementing and controlling backward flows 

of raw materials in process inventory, packaging and finished goods, from a manufacturing, 

or distribution or use point, to a point of recovery of point of proper disposal''. Wy et al. [5] 
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considered three major business lines (i.e., residential, commercial and roll-on/roll-off) for a 

waste collection problem. In the residential waste collection problem, the vehicles pass from 

streets and collect homemade wastes. In this problem, each street can be seen as one arc that 

must be passed through it. Bonomo et al. [6] changed a residential waste collection problem 

into a traveling salesman problem (TSP) and applied it in the real case in Buenos Aires. In a 

commercial waste collection problem, a goal is to find rational routes in order to collect 

wastes from location of commercial sites. Sahoo et al. [7] used a heuristic method based on 

geographical information system (GIS) and clustering methods for the commercial waste 

collection problem. The roll-on/roll-off waste collection problem considers the collection of 

wastes from industrial sites and this type of the problem has a specific restriction, in which 

each tractor can serve only one customer. In this problem, customers demand large container 

services; however, the tractors can serve only one customer at a time [8]. In this research, we 

consider the collection of hazardous wastes from commercial location, such as hospitals, 

shopping centers and industrial companies. 

 

Hazardous waste can be defined as the useless materials that have a bad influence on 

environment and human's life. Some kinds of these materials cause immediate or long-term 

risk for humans, plants, animals and in total for our environment. Hence, proper planning for 

collection of hazardous waste can be advantageous for the environment and can enhance the 

lives of people.  According to Alumur and Kara [9], waste can be characterized as hazardous 

if it has any of the following attributes: ignitability, corrosiveness, reactivity or toxicity.  

Two risk measures are commonly used in the literature of waste collection, societal risk and 

population exposure [10]. Societal risk is the product of probability of the accident 

occurrence and the results of the accident. Population exposure is the number of population 

influenced from hazardous wastes. Giannikos [11] defines risk as the number of products 

transported per town. Caballero et al. [12] considered three objective functions for 

transportation risk. The first one takes into account rejection of towns that trucks cross from it 

in their way. The second one is equity distribution of damage between the towns. The last 

objective function is about towns that are near to incineration plants, called collective 

disutility. In this paper, we utilize the risk type 2 meaning that population exposure and 

dissatisfaction of people in transportation routes are considered as one of criteria to evaluate 

the solutions.  

Martinez-Salazar et al. [13] considered a transportation location-routing problem and 

presented a new bi-objective mathematical model for this two-stage location-routing 

problem. They implemented two meta-heuristic algorithms based on scatter and tabu search 

procedures for non-linear multi-objective optimization (SSPMO) and NSGA-II. Two 

objectives are considered as decrease of distribution cost and the equitable distribution of 

workloads for drivers.  



                                                                H. Farrokhi-Asl and  R. Tavakkoli-Moghaddam / IJRIE 4(1-4) (2016)16-42         18 

 

The transportation vehicle routing problem belongs to the class of NP-hard problems. The 

problem size increases heuristic and meta-heuristic methods become the only viable 

alternative. This paper considers a bi-objective transportation vehicle routing problem, so we 

use the NSGA-II and proposed a new multi-objective hybrid algorithm based on cultural and 

genetic algorithms that feature a special solution representation scheme for this problem. 

Several experiments are conducted for this problem and the results are compared with each 

other with the respect to some assessment measures.  

The remainder of the paper is structured as follows. In Section 2, the problem definition and 

mathematical model is described. Section 3 explains the details of the proposed algorithm and 

NSGA-II. Comparisons and discussion on the experimental results are presented in Section 4. 

The study is finally ended by conclusions and future research in Section 5.  

 

 

2. Problem description  

This research focuses on societal and economic issues of hazardous wastes collection from 

commercial locations, treatment of these wastes and disposal of wastes residues. There exists 

specific number of customers and each customer produces some kinds of waste. Customers 

request for collection, treatment and disposal of these wastes. There exist several treatments 

facilities and disposal centers with different attributes. Treatment facilities aim to treat 

hazardous wastes collected from customers' locations and reduce the destructive effects of 

hazardous wastes. Each treatment facility has its own technology (i.e., each treatment facility 

can treat only specific kinds of wastes those are compatible with its implemented 

technology). In addition to these nodes, there exits several depots node and various disposal 

centers. Trucks start their routes from depots to serve customers and each vehicle must return 

to the depot, which departs from it. The capacity of each depot is limited and only certain 

number of trucks can leave the related depot to serve customers. Trucks are considered multi-

compartment meaning that each vehicle has specific space for each type of waste; therefore, 

the capacity of trucks for each type of waste is different. Also the traveling distance must be 

limited for each truck. Trucks start their routes from depots and move to customers' locations 

and collect the customers' wastes with regard to capacity and traveling distance limitations. 

After these actions, each truck must move to treatment facility that has compatible 

technology with the loads of truck. In other words, trucks must try to find the treatment 

facilities that can treat all hazardous wastes shipped with them and move to one of these 

appropriate treatment facilities. Of course, we must regard to capacity limitation of each 

treatment facility. And the total amount of all types of waste are treated in each treatment, in 

which facility must not exceed from capacity of treatment facility.  After unloading of wastes 

in location of a treatment facility, trucks must return to its own depot. Thus, the first stage of 

the problem (i.e., routing phase) is ended at this point.  

Treatment facilities eradicate the potential risks of hazardous wastes and each treatment 

facility according to applied technology can decrease the ratio of wastes' volume. For the 
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reason of eradication of potential risk and reduction of wastes' volume, residue wastes can be 

transported from treatment facilities' location to the disposal centers by means of general 

vehicles. Each disposal center has specific capacity limitations. The second phase is about 

transportation of waste residues from treatment facilities to disposal centers.  

In this research, we consider two objective functions minimizing the economic cost and 

societal risk. The economic cost includes the routes cost, treatment cost, transportation cost of 

residue wastes and disposal cost of these residue wastes. The societal risk encompasses the 

reduction of populations suffering from transportation of hazardous wastes. Trucks pass from 

towns in their routes to servicing customers and each town has certain population. Hence, we 

intend to choose the routes that pass from thin towns. Figure 1 depicts an example of a 

solution to the problem.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 1. Example of solution to the problem. 

 

The problem can be seen as two distribution stages linked with each other. The first stage 

also called a vehicle routing problem, which corresponds to the collection of hazardous 

wastes from customers' locations. The second stage is transportation stage, which 

corresponds to the transportation of waste residues from treatment facilities to the disposal 
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centers. Figure 2 shows the process of getting rid of hazardous wastes. Each stage of the 

problem has its own characteristics presented below: 

 

First stage characteristics: 

 There exist several depots so the problem can be seen as a multi-depot problem. 

 The capacity of depots is limited. 

 Several types of wastes are produced in customers' locations. 

 Trucks are multi-compartment in this stage.  

 The treatment facilities are capacitated.  

 Trucks have two types of restrictions: (1) the capacity for each type of waste is 

limited and (2) the traveling distance must be less than certain amount of length. 

 Trucks are homogeneous. 

 Several types of technologies are implemented in treatment facilities.  

 Each type of waste must be treated at appropriate treatment facilities with 

compatible technology.  

 

Second stage characteristics: 

 There exist different disposal centers. 

 Disposal centers are capacitated. 

 The percent of mass reduction of each type of waste is deterministic when the 

waste treated by specific treatment technology. 

 The transportation cost of one unit of waste residue between treatment centers and 

disposal centers is known.  

 

 

 

 

 

 

 

 

 

Fig 2. Process of treatment and disposal of wastes. 

 

We propose the following mathematical model for our bi-objective transportation vehicle 

routing problem.  
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{1,2,..., }D d  Set of depots 

{1,2,..., }T t  Set of treatment facilities 

{1,2,..., }F f  Set of disposal facilities 

{1,2,..., }N n  Set of customers 

{1,2,..., }W w  Set of indexes for types of wastes 

{1,2,..., }Q q  Set of indexes for treatment technologies 

Parameters: 

R  Capacity of depots 

tTr  Capacity of treatment facility t 

fDis  Capacity of disposal facility f 

w  Capacity of vehicle for waste type w 

H  Maximum possible total traveling distance of vehicles in routing stage 

iwd  Amount of waste type w produced by customer i 

ijdis  Distance between nodes i and j 

ijpop  Population exposure in arc (i,j), ,i j D T N    

tfc  Transportation cost of one unit of waste residue from treatment facility 

t to disposal center f 

wq  Percent mass reduction of waste type w treated with technology q 

wqcom  1 if waste type w is compatible with technology q 

qtEs  1 if treatment facility with technology q established in node t 

V  Cost of traveling one unit of distance by trucks  

wtct  Cost of treatment one unit of waste type w at treatment facility t  

fcd  Cost of disposing one unit of waste residue in node f 

    

 Decision variables: 
( )d

ijx  If node j is visited just after node i in any route of depot d, ( ) 1d

ijx  ; 

otherwise =0 

idz  If customer i is assigned to depot d, 1idz  ; otherwise=0 

iwU  Continuous variable that represents the load of waste type w after 

visiting customer i 

ie  Continuous variable that represents the distance traveled by truck after 

visiting node i  
d

oix  If customer i is the first customer in any route of depot d, 1d

oix  ; 

otherwise=0 
( )

0

d

ix  If treatment facility i is the last node in any tour of depot d, ( )

0

d

ix =1; 

otherwise=0. 
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wty  Amount of waste type w treated at treatment facility node t 

fo  Amount of waste residue disposed at disposal center f 

tf  Amount of waste residue transported from treatment facility t to 

disposal center f 

 

Objective functions: 

   
( )

1min  f d

ij ij wt wt f f tf tf

i N D T j N D T d D t T w W f F t T f F

V dis x ct y o cd c 
           

          (1) 

( )

2min  f d

ij ij

i N T j N T d D

pop x
    

     (2) 

 

s.t. 
( )

0

d

i

i N

x R


  i N   (3) 

( ) 1d

ij

i D N d D

x
  

   j N   (4) 

( ) ( )d d

ij jk

i D N T k D N T

x x
     

   ,j D N T d D      (5) 

wt t

w W

y Tr


  t T   (6) 

1id

d D

z


  i N   (7) 

( )d

il ld

i D N

x z
 

  ,l N d D    (8) 

( )d

iw jw w ij w jw

d D

u u x d


     , ,i j N w W    (9) 

iw iw wd u   ,i N w W    (10) 

( ) ( )

0 0( )d d

i iw iw w iw w i

d D d D

x d u d x
 

       ,i N w W    (11) 

( )d

ij iw wj

i N d D

x u y
 

  j T   (12) 

wt t

w W

y Tr


  t T   (13) 

( )0 ( 1)d

ij wq qi iwx com Es u    , ,i N j T w W     (14) 

( ) ( )( ) ( )d d

i j ij ij ji ji

d D d D

e e H dis x H dis x H
 

        ,i j N T    (15) 

( ) ( )

0 0( )d d

di i i di i

d D d D

dis x e H dis H x
 

      i N   (16) 

( )

0

d

i i id

d D

e H x dis


   i T   (17) 

tf f

t T

o


  f F   (18) 
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(1 )wq qt wt tf

q Q w W f F

Es y 
  

     t T   (19) 

( ) ( )

0

d d

dj jx x  ,d D j N    (20) 

( ) ( )

0

d d

id ix x  ,d D i T    (21) 

( ) ( ) ( )

0 0, , {0,1}d d d

ij i ix x x   , ,i j D N T d D      (22) 

0iwu   ,i N w W    (23) 

0ie   i T N    (24) 

0wty   ,w W t T    (25) 

0fo   f F   (26) 

0tf   ,t T f F    (27) 

 

The first objective function considers the economic cost consisting of four terms. The first 

term calculates the cost of routes and servicing to the customers. The second term relates to 

the cost of hazardous wastes treatment at treatment facilities. The third terms represents the 

cost associated to dispose of residue wastes. Finally, the last term considers the cost related to 

the transportation stage of the problem. The second objective function is about societal 

rejection of wastes in towns that are crossed by trucks. This objective aims to reduce the 

people who are suffered from transportation of wastes.  

Constraints (3) represent that the number of trucks leaving specific depot must not trespass 

from the capacity of the depot. Constraints (4) guarantee that each customer must be serviced 

only by means of one truck. If each truck enters to one node, it must depart from it. This 

limitation and continuity of routes are considered in constraints (5). Constraints (6) satisfy the 

capacity restriction for treatment facilities. Constraints (7) ensure that each customer is 

allocated to only one depot. Constraints (8) guarantee that the routes are established between 

nodes assigned to same depot. The next three sets of Constraints (9) to (11) are lifted Miller–

Tucker–Zemlin (MTZ) sub-tour elimination constraints for the classical VRP, which are first 

proposed by Desrochers and Laporte [14], and revised by Kara et al. [15]. In our problem, 

these three constraints are modified to guarantee the sub-tour elimination. Additionally, 

constraints (10) consider the capacity of vehicles in each route. Constraints (12) calculate the 

amount of waste treated in each treatment facility. Constraints (13) ensure that the solutions 

do not exceed the capacity of each facility. Each truck must unload its wastes at treatment 

facility that are compatible by its load. This restriction is shown in Constraints (14). 

Constraints (15) to (17) ensure that the length of routes do not trespass from an upper bound 

of the route length. Constraints (18) specify the waste residues amount that must be disposed 

in disposal centers. Constraints (19) balance the flow between treatment facilities and 

disposal centers. Constraints (20) and (21) specify the relation between decision variables. 

Constraints (23) to (27) define the type of the variable used in this model. 
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3. Methodology  

We design two solution algorithms to find rational Pareto solutions, in which the first one is 

based on multi-objective hybrid cultural and genetic algorithm (MOHCG) and the other one 

is based on the non-dominated sorting genetic algorithm (NSGA-II) [16]. Additionally, we 

present a straight-forward representation to reduce the complexity and decrease of 

computational time. A new representation, which will be explained in the next section, 

considers a feasibility of generated solutions and some constraints caused the infeasibility 

will be managed by introducing penalty function as 3f . It is obvious that we must try to 

minimize the penalty objective function.  

 

3.1. Order-based representation 

This representation is based on order of the problem component. We specify four major 

components for the problem and the solutions can be extractable by determining the situation 

of these components. These main components of the problem include customers order, depots 

order, treatment facilities order, and disposal centers order. Therefore, the representation 

proposed for this problem consists of: 

 Order of customers 

 Order of depots 

 Order of treatment facilities 

 Order of disposal centers 

The methodologies, in which we specify the order of the components of the problem, are 

partly different for the solution approaches investigated in this paper (i.e., MOHCG and 

NSGA-II) and this difference is related to distinction in nature of these two solution 

approaches. The nature of NSGA-II is discrete and the nature of MOHCG is continuous. In 

NSGA-II, we produce a permutation for the integer numbers in the range (1-n) and this 

permutation specifies the priorities of customers. Order of the depots is a permutation for 

integer numbers in range (1-d), order of the treatment facilities is a permutation for integer 

numbers in range (1-t) and the order of disposal centers is a permutation for integer numbers 

in range (1-f). In MOHCG the manner is partly different with NSGA-II. In MOHCG, we 

generate random real numbers in range (0-1) for all components of the problem (i.e., 

customers, depots, treatment facilities and disposal centers). For example in customers 

ordering, each random real number corresponds to one customer. We can specify the order of 

customers by sorting of corresponding real numbers.  Figure 3 demonstrates a simple 

example for this type of ordering based on random real numbers between 0 and 1.  
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Fig 3. Example of customers ordering in MOHCG 

 

After specifying the order of members in each problem component, the construction 

algorithm can transform this simple representation to meaningful solutions for the problem. 

At this point, we must produce the routes, so we start with the first rank depot in depots order 

and assign the first rank customer to the first depot. We keep on with the second customer. If 

adding this customer to route does not exceed the capacity limitation of truck, we adjoin this 

customer to the current route and assign this to the first depot. We continue this manner until 

adding the next customer in customers order to the current route causes trespass from 

capacity of truck. At this point, we stop assigning customers to current route and current 

depot, and we continue with the next depot in the depots order. Note that the sequence of 

customers in each created route is the same as these customers arrangement in customers 

order. We start with the second depot and perform the previous steps for the second depot. 

The customers are assigned to the second depot until the adding one customer to the second 

route exceeds the capacity of truck (the capacity for all types of waste must be investigated). 

We start from the first depot and repeat these actions till the last depot. If some customers are 

left unassigned, we return to the first depot and start assignment process from the first depot 

to the last one. Note that implementation of this policy about assignment of routes to depots 

prevents any violation about capacity of and we distribute routes between depots in the 

equitable manner. 

Now, the last step of a routing stage (i.e., unloading the waste in compatible treatment 

facility) must be done to complete this stage. Each truck's load is known at this point and we 

must decide what treatment facility is appropriate with respect to wastes transported with 

truck. We start with the first truck (i.e., route) and then search for the first treatment facility 

in facilities order that has enough capacity and compatible technology for treatment of the 

loads of this truck. After finding the facility having these two conditions, the truck moves 

toward this facility. We apply these methods to assign all trucks to treatment facilities. After 

doing all the previous steps, the first stage is finished and each truck must return to depot that 

truck starts their routes from it.  

The second stage of the problem is the transportation problem, in which the waste residues 

must transport from treatment facilities to disposal centers. In this stage, we must distribute 

the produced waste residues in facilities between disposal centers. Order of facilities and 

disposal centers are known. Hence, we start with the first disposal centers and assign the 

waste residues associated with the first facility to the first disposal center until fulfilling the 

capacity of disposal centers. If the remaining capacity of the first unassigned disposal center 

is less than the waste residues produced in the first unassigned treatment facility, we transport  

Customers 1 2 3 4 5 6 

Random real numbers 0.123 0.222 0.809 0.437 0.011 0.943 

Numbers rank 5 4 2 3 6 1 

Resulted order of customers 6 3 4 2 1 5 
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1. Generate random permutation for customers, depots, treatment facilities and disposal centers 

2. Define. 

               ( , , )d w r = all demands of waste type w assigned to route r from depot d 

               dr = set of customers assigned to route r from depot d  

                = set of unassigned customers  

3. d=1. 

4. Start from depot d 

5. If1   demand(first customer, waste type w) + ( , , )d w r   w  

5.1.  Insert the first customer to dr . 

5.2.  Delete the first customer from customers order and from  . 

5.3.  For all types of waste : ( , , )d w r = ( , , )d w r + demand (first customer, waste type w)  

5.4.  If2  ={}  

5.4.1. Go to step 8. 

5.5. end if2 

6. else1  

6.1. d=d+1. 

6.1.1. If3  d> number of depots 

6.1.1.1.  d=1, r=r+1. 

6.1.1.2. Go to step 4. 

6.1.2. end if3 

6.2. Go to step 4.  
7. end if1 

8. r=1, t=1. 

9. Start from route r 

9.1. If4 treatment facility t was compatible for all wastes of route r  && ( , , )t

w

Tr d w r  

9.1.1. Assign treatment facility t to route r 

9.1.2.  ( , , )t t

w

Tr Tr d w r   

9.1.3. t= 1, r=r+1 

9.2.  else4 

9.2.1. t=t+1, and go to step 9.1 

9.3. end if4 

10. Calculate the volume of waste residue must be transported to disposal center from each treatment 

facility as Trans(t) 

11. for1 every treatment facility t in treatment facility order  
11.1. for2 every disposal center f in disposal centers order 

11.1.1. if5 Dis(f) >0 

11.1.1.1.  transportation(t,f)=min {Dis(f), Trans(t)} 

11.1.1.2.  Dis(f)=Dis(f)-transportation(t,f). 

11.1.1.3.  Trans(t)=Trans(t)-transportation(t,f) 

11.1.2. endif5 

11.1.3. if Trans(t)=0 

11.1.3.1.  Break main loop. 

11.2. end for2 

12. end for1 

 

Fig 4. Pseudo code of the construction algorithm. 
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waste residues equal to the remaining capacity of the disposal center and the left waste 

residues of facility are sent to another disposal centers.   

With this representation, every solution generated by a constrction algorithm is treated as a 

feasible solution. The truck capacity limitation is considered in the generation of solutions; 

however, as can be seen the length of routes in stage one is not considered in the construction 

algorithm. To solve this issue, we define a new objective function as penalty ( f3 )  to be 

minimized to non-feasible solutions. This representation can be easily implemented in meta-

heusristic algorithms and we are not concern about the infeasibility when some operators 

change the solutions chromosome to generate neighborhood solutions. Because of easiness of 

this representation to generate solutions this constructive algorithm is used for initial 

solutions in both algorithms. Figure 4 presents a pseudo code of the construction algorithm.  

 

3.2. Procedure based on MOHCG  

The cultural algorithm (CA) was introduced by Reynolds [17], which is an extension of the 

classical GA. The CA for a single objective problem considers interactions between 

individuals; however, in the GA, these interactions do not take into consideration. Individuals 

in the population communicate with each other to generate a belief space (i.e., culture) and 

this belief space stores knowledge about the problem within itself and use this knowledge to 

improve produced solutions. Figure 5 shows the cultural algorithm mechanism. Experience of 

individuals selected from the population space according to some criteria is used to produce 

problem solving knowledge that impacts on the belief space. The belief space saves and 

manipulates the knowledge and information to influence on the evolution and improvement 

of the population space. 

Another version of the cultural algorithm is the hybrid version of the CA and GA. In the 

cultural-based GA, knowledge is used to store and transmit knowledge from one generation 

to the next. The CGA is composed of two spaces, population space and belief space. The 

population space is implemented by an extended GA, and in that it uses crossover and 

mutation operators. Best et al. [18] extended a cultural algorithm framework to handle multi-

objective problems. The experimental results showed that MOCA can be used independently 

or as a supplementary to other MO algorithms.   

Belief space includes several main components named as knowledge source. In CA 

knowledge sources consist of situational knowledge, topographical knowledge, normative 

knowledge, domain knowledge and historical knowledge. In this research according to the 

attributes of genetic operator in population space, we consider only two main components of 

the algorithm, normative knowledge and situational knowledge.  
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Fig 5. Single objective CA template. 

 

The steps of the proposed MOHCG algorithm are summarized as follows: 

Step 1. The initial population of algorithm is generated by means of mentioned constructive 

algorithm and based on new representation.  

Step 2. The solutions are evaluated and a rank is assigned to each solution with regard to its 

non-domination concept. Level 1 is the best level, 2 is the next best level, and so on. For the 

solutions of the same rank, a crowding distance is calculated by using a crowded-calculator 

operator. By this operator, the selection process goes toward a uniformly spread Pareto front 

at different stages of the algorithm. Among two solutions at the same front, the solution 

located in a low density region is preferred.  

Step 3. Belief space is adjusted by means of specific operators. One operator updates the 

situational knowledge and another one updates the normative knowledge.  

Step 4. Population is influenced from cultural space and knowledge about normative 

solutions and situational solutions impacts on direction of population component. Population 

is updated and new population is available to continue algorithm. 

Step 5. Genetic operators (i.e., crossover and mutation operators) are applied to create the 

next generation called the offspring population from the current chromosomes called parents.  

Step 6. The new generated population and the old population are merged with each other.  

Step 7. The merged populations are sorted according to the rank of solutions and crowding 

distance criteria.  

Step 8. The solutions with the ranked 1 are stored as Pareto solution. 
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Step 9. The stop criterion in this algorithm is considered as maximum number of iterations. If 

the criterion is satisfied the algorithm is stopped; otherwise, Steps 3 to 9 are repeated.  

The main structure of the proposed MOHCG algorithm is shown in Figure 6.  

 

3.3. Acceptance  

In the real world and real society, people who are bold and brilliant can impact on other 

people or change the conditions or influence on culture and beliefs. Cultural algorithm 

inspired from this cultural evolution in societies. Population members are eligible to change 

belief space that have specific characteristics. In single objective CA the sorting of solutions 

according to their objective functions are simple and phenotype space is sortable regarding to 

objective values. The solutions which have top rank in order of solutions are accepted. In this 

proposed algorithm we sort solutions according to their rank and crowding distance. First 

priority for comparison of solutions is rank criterion and the second priority is crowding 

distance. Therefore, if two solutions have same rank, we refer to crowding distance to specify 

the better solution. 

After sorting the solutions in population space, the specific number of solutions is accepted to 

influence on belief space. In this algorithm, number of solutions that are impressing on belief 

space is dynamic and this number is decreased iteration by iteration. The number of effective 

members in population impressing on belief space is calculated by: 

( ) s
B

n
n t

t

 
  
 

 

where  ( )Bn t  is the number of effective members, sn is the population size and  is the fixed 

value between 0 and 1. In this formulation, the number of effective members in population is 

decreased gradually.  

 

 

3.4. Belief space adjustment 

Situational knowledge stores the records of the population and good solutions in each 

generation are eligible to change the situational knowledge. This concept is similar to the 

concept of the leader in the PSO algorithm proposed by Kennedy and Eberhart [19]. In the 

proposed algorithm in this paper, one solution from Pareto solutions is selected randomly and 

then this solution is compared with the current situational knowledge solution. If the selected 

solution dominates the current solution, the situational knowledge will be updated. If the 

current situational knowledge dominates the selected solution, we do nothing. Finally, if two 

solutions do not dominate each other, on solution is selected randomly.  

 

 ( )         y(t) x

             x y(t)( 1) y t

xy t    
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Fig 6. Flowchart of the proposed MOHCG algorithm 

 

 

Normative knowledge is a set of promising variable ranges that provide norms for the current 

individuals. Let 1 2   ( , ,..., )nx x x x  shows the solution space. In the normative knowledge, 

we specify a range for each dimension of solution. Each dimension has minimum and 

maximum value shown min

ix and max

ix .  Solutions, whose minimum or maximum is a part of 

solutions, have the corresponding objective function values, namely lower and upper bounds. 

The lower and upper bounds are attributed for minimum and maximum values, respectively. 

Hence each solution dimension is shown by three factors as follows: 
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min max
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For the changing normative knowledge in each iteration, we use the following formulation: 

𝑥𝑗
𝑚𝑖𝑛 = {

𝑥𝑙𝑗(𝑡), 𝑥𝑙𝑗(𝑡) < 𝑥𝑗
𝑚𝑖𝑛(𝑡) 𝑜𝑟

                         𝑓(𝑥𝑙) (𝐿𝑗
1, … , 𝐿𝑗

𝑚)

𝑥𝑗
𝑚𝑖𝑛(𝑡), 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒;

 

 

where ( )ljx t is the j-th component of selected solution from Pareto solutions. If the 

corresponding min

jx  values is updated, , 1,2,...,i

jL i m   will be updated, and new lower 

bounds are replaced with older ones.  

 

𝑥𝑗
𝑚𝑎𝑥 = {

𝑥𝑙𝑗(𝑡), 𝑥𝑙𝑗(𝑡) > 𝑥𝑗
𝑚𝑎𝑥(𝑡) 𝑜𝑟

                         𝑓(𝑥𝑙) (𝐿𝑗
1, … , 𝐿𝑗

𝑚)

𝑥𝑗
𝑚𝑎𝑥(𝑡), 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒;

 

 

If the corresponding max

jx  values is updated,  , 1,2,...,i

jU i m  will be updated, and new 

upper  bounds are replaced with older ones.  

 

3.5. Population change 

After updating the belief space, this changes must reflect on the population space and the 

individuals is population space must conform themselves with the new culture. For the 

changing the population space, the individuals try to move toward into norms and will be 

close to situational knowledge. In this proposed algorithm, we use four types of movement 

and changing individuals. In each iteration, one integer random number is generated between 

1 and 4, and one of these methods is selected according to the generated number. These 

methods are illustrated as follows: 

1. In this method, we just use normative knowledge. The following formulations are used 

to generate new solutions: 

 
'

max min

( ) ( ) ( ) (0,1)

( ) [ ( ) ( )]              0 1

ij ij j

j j j

x t x t t N

t x t x t



  

  

    
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2. In the second method, we use only situational knowledge for updating the populations. 

The goal is to close individuals to components of situational knowledge. 

𝑥𝑖𝑗
′ (𝑡) = {

𝑥𝑖𝑗(𝑡) + 
𝑖𝑗

|𝑁(0,1)| ,   𝑥𝑖𝑗(𝑡) < 𝑦𝑗(𝑡)

𝑥𝑖𝑗(𝑡) − 
𝑖𝑗

|𝑁(0,1)| ,   𝑥𝑖𝑗(𝑡) > 𝑦𝑗(𝑡)

𝑥𝑖𝑗(𝑡) + 
𝑖𝑗

𝑁(0,1) ,      𝑥𝑖𝑗(𝑡) = 𝑦𝑗(𝑡)

 

 

( ) [ ( ) ( )]ij ij jt x t y t     

 

where ( )jy t is the j-th component of situational knowledge in iteration t.   

3. In the third method, we use situational knowledge for specifying the movement 

direction and normative knowledge for length of movement. The formulation is the 

same with the above formula; however for specifying the length of movement, we use 

following formula: 
max min( ) [ ]ij j jt x x     

 

4. In the last method, we use only normative knowledge, but in different way with 

method 1.is one random parameters between 0 and 1.  The schematic figure for this    

method is shown in Figure 7. 

 

𝑥𝑖𝑗
′ (𝑡) = {

𝑥𝑖𝑗(𝑡) + 
𝑗
|𝑁(0,1)| ,   𝑥𝑖𝑗(𝑡) < 𝑥𝑗

𝑚𝑖𝑛(𝑡)

𝑥𝑖𝑗(𝑡) − 
𝑖𝑗

|𝑁(0,1)| ,   𝑥𝑖𝑗(𝑡) > 𝑥𝑗
𝑚𝑎𝑥(𝑡)

𝑥𝑖𝑗(𝑡) + β
𝑖𝑗

𝑁(0,1) ,           𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒;

 

 

 

 

 

 

 

Fig 7. Schematic view of method 4. 

 

 

3.6. Crossover operator 

Before we launch crossover operator, we must choose appropriate parents for applying 

crossover on these parents. For this reason and for selection appropriate parent for a 

crossover operator, we use two roulette wheel methods, the first one selects the first parent 

with respect to the first objective function and the second one selects with respect to the 

second objective values. As mentioned before, we specify the characteristic of solutions with 

//////////////////////////////////////////////////////////////////////////////////////////// 

𝑥𝑚𝑖𝑛 𝑥𝑚𝑎𝑥 



33         Solving a Bi-Objective Transportation Vehicle Routing Problem for Waste Collection by a New Hybrid Algorithm 

   

four components (i.e., depots order, customers order, treatment facilities order and disposal 

centers order). In this stage, we decide which component must be selected for the crossover 

operator. For this reason, we generate one integer random number in range (1-15) and specify 

which policy is chosen to apply in this stage. (15=(4
1
) + (4

2
) + (4

3
) + (4

4
)).  Because of 

continuous nature of proposed algorithm, we use a crossover operator that are compatible for 

continuous problems.  

 

3.7. Mutation operator 

In this section, we apply three types of mutation operators to explore better in genotype 

space. We generate two random numbers, first one is in the range of 1 and 3 and the second 

one is in range of 1 and 15. If the first number is 1, we use an insertion operation. In this 

operator, two genes are selected randomly and insert the second genes after the first selected 

gene. If the first generated random number is 2, we apply the swap operation, which select 

two genes randomly and swap their location in the chromosome. If the generated random 

number is 3, we use the reverse operation and reverse genes between randomly selected 

genes. The second random number is applied for the purpose of specifying which 

components are selected for mutation. 

 

3.8. Proposed NSGA-II 

The genetic algorithm (GA) is a population-based meta-heuristic algorithm, which is widely 

used to solve optimization problems. It was first introduced by Holland [20] who developed 

this algorithm on the basis of the natural selection and inheritance. Different extensions of the 

GA are applying the GA for multi-objective optimization problems that exist in the literature. 

The GA is one of the most frequent meta-heuristic algorithms for solving vector optimization 

problems, since it does not need the user to prioritize, scale, or weighing objectives [21]. Fast 

non-dominated sorting genetic algorithm (NSGA-II) which was presented by Deb et al. [16] 

is one of the algorithms used in the current study. All the steps for this proposed algorithm is 

same with the original NSGA-II presented before. The construction method and other steps 

for the algorithm is illustrated in the previous sections; however, the crossover operator used 

in this algorithm is different with the MOHCG. For the reason of a discrete nature of the 

problem, the OX (order crossover) operator is applied [22].  

 

 

4. Experimental results 

The performances of the proposed MOHCG and NSGA-II are compared with each other and 

the associated results are analyzed. The algorithms are coded in MATLAB R2013a and run 

on Intel Core i5 2.27 GHz personal computer with 4 GB RAM. 
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4.1. Test instances 

To the best of our knowledge, there are no available benchmark instances in the literature, so 

the instances solved in this paper are built by a defined instance generator in Matlab software.  

The generated instances are built from six main components. All components with each other 

make characteristics of one instance. The generated instances were named (d×t×f×c×w×q). 

These characters denote number of depots, number of treatment facilities, number of disposal 

centers, number of customers, number of waste types and number of available technologies 

respectively. Instances can be divided into two main categories, small instances, and medium 

and large scale instances. The instances are generated randomly. This results in a set of 20 

instance types for two sizes of problems. Each instance runs 5 times and the results are 

collected. Instances are available for download from: 

https://www.dropbox.com/sh/770opj0ut22jyho/AACsvMzKCHJeCSD2ZaSuYU8ka?dl=0. 

 

4.2. Tuning parameters  

The experimental results are implemented in two sections consisting of small, and medium/ 

large-sized problems. For each kind of problems Taguchi design of experiment are conducted 

according to the number of Pareto solutions in Minitab software  and the tuned values for 

each parameter of algorithms are summarized as follows : 

   4.2.1. Small-sized problems 

 Number of population size for two algorithms is considered 50.  

 Maximum number of iterations is considered 50. 

 Mutation and crossover rates in NSGA-II are 0.4 and 0.5, respectively. 

 Mutation and crossover rates in MOHCG are 0.4 and 0.6, respectively. 

 Alpha and beta parameters in population change methods in MOHCG are 

considered 0.4 and 0.3, respectively. 

 Acceptance fixed coefficient is considered 0.8. 

 

  4.2.2. Medium/large-sized problems 

 Number of the population size for two algorithms is considered 50.  

 Maximum number of iterations is considered 50. 

 Mutation and crossover rates in NSGA-II are 0.4 and 0.5, respectively. 

 Mutation rate and crossover rate in MOHCG are 0.5 and 0.6, respectively. 

 Alpha and beta parameters in population change methods in MOHCG are 

considered 0.5 and 0.2, respectively. 

 Acceptance fixed coefficient is considered 0.7. 
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4.3. Meta-heuristics comparison 

For experimental evaluation when we reference to MOHCG and NSGA-II, we are referring 

to our implementation of these algorithms. Five run for each instance are performed to gain 

results. In order to compare the efficiency of the proposed algorithms, we use six 

performance metrics, named as number of Pareto solutions (NPS), computational time, 

spacing metric (SM), space covered (SC), Diversification metric (DM) and coverage metric 

(CM).  

The number of Pareto solutions measures the algorithms ability to find an efficient point. 

Tables 1 and 2 are summarized the results for small and medium/large-sized problems, 

respectively. In addition, the computational time spent for finding these Pareto solutions is 

demonstrated in these two Tables. In small-sized problems computational times for both 

algorithm is in the same range. In large-scale problems, the computational time for NSGA-II 

is almost better than MOHCG, but this difference is not notable. In most examples, MOHCG 

is better than NSGA-II in producing Pareto numbers and the average values in small and 

large-scale problems confirm this assertion.    

Table 1. Quantity of Pareto solutions and computational time for small-sized problems 

 Quantity of Pareto solution  Computational time(s) 

Problem characters NSGA-II MOHCG  NSGA-II MOHCG 

4-4-4-5-2-2 7.2 10.8  24.2 25.8 

5-5-4-6-4-3 10.2 14  25 26 
5-6-5-20-4-3 9.4 10  24.8 25.4 

6-6-6-8-3-4 11.2 8.6  22 24 

7-8-8-10-4-3 12.4 12.2  24 24.8 

8-7-9-12-2-3 9.8 14.2  24.6 23.4 

10-10-10-10-4-4 8 10  25 26.2 

10-10-10-5-4-3 8.8 12.4  31 29.8 

11-11-11-15-2-2 11.4 11.6  26 27 

12-12-10-15-3-4 8.6 10.2  26 27.4 

Average 9.7 11.4  25.26 25.98 

 

Table 2. Quantity of Pareto solutions and computational time for medium/large-sized problems 

 Quantity of Pareto solution  Computational time (s) 

Problem characters NSGA-II MOHCG  NSGA-II MOHCG 

15-15-15-25-4-4 7 5  26.2 30 

15-15-15-30-5-4 14.8 13.2  27 30.4 

20-18-20-30-5-4 11.2 15.4  29.4 32.4 
20-20-18-25-5-5 16 15.2  27.4 29.2 

20-20-20-40-4-4 7.2 8.6  31 33.4 

20-20-20-40-5-5 5.8 9  30.4 33.6 

20-25-25-50-3-3 12 14  33.6 35 

20-25-25-100-3-3 12.4 11.4  45.8 48.8 

30-25-25-100-2-2 14.8 11.8  49 51 

30-30-30-150-3-5 13 13.2  58 64.6 

Average 11.42 11.68  35.78 38.84 
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Spacing metrics provides us details about the uniformity of the distribution of the solutions 

obtained by way of each algorithm. This metrics are computed by: 

2

1

1
1 ( )

1

n

i

i

SM d d
N 

  



 

where id is the Euclidean distance between solution i and the nearest solution is belongs to 

Pareto sets of solutions.. In some instances, MOHCG id is the average value of all  d  

operates better and in other instances NSGA-II operates better. This measure does not show a 

superiority of none of them; however, the average value for NSGA-II is better than MOHCG. 

The results are shown in Tables 3 and 4.  

 

Table 3. SM measure for small-sized instances 

Problem characters NSGA-II MOHCG 

4-4-4-5-2-2 2.0596e4 1.1687e4 

5-5-4-6-4-3 1.5370e4 1.2737e4 

5-6-5-20-4-3 2.5077e4 2.3223e4 

6-6-6-8-3-4 1.2326e4 1.5078e4 

7-8-8-10-4-3 1.8156e5 1.5560e5 

8-7-9-12-2-3 0.7814e4 2.3286e4 
10-10-10-10-4-4 3.9840e4 5.5144e4 

10-10-10-50-4-3 9.0894e4 6.9924e4 

11-11-11-15-2-2 1.8823e4 1.4247e4 

12-12-10-15-3-4 1.8119e3 2.4534e4 

Average 4.3695e4 6.1064e4 

 

Table 4. SM measure for medium/large-sized instances 

Problem characters NSGA-II MOHCG 

15-15-15-25-4-4 1.445e5 3.1505e4 

15-15-15-30-5-4 2.0391e4 3.3161e4 

20-18-20-30-5-4 1.8133e4 2.8232e5 

20-20-18-25-5-5 1.5975e4 7.1180e4 

20-20-20-40-4-4 1.2129e6 2.9243e6 

20-20-20-40-5-5 2.1604e5 1.2046e5 
20-25-25-50-3-3 3.1683e4 5.135e5 

20-25-25-100-3-3 4.4345e4 3.5291e4 

30-25-25-100-2-2 5.6636e6 2.4809e7 

30-30-30-150-3-5 1.5787e8 1.4095e8 

Average 16.5339e6 16.9819e6 

 

Diversification metric (DM) specifies the spread of solution set and is determined by: 

1

max( )
n

i i

t t

i

DM x y


 
 

where max( )i i

t tx y  is the Euclidean distance between the non-dominated solutions t

ix  and 

t

iy . 
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In all small-sized instances, MOHCG operates better than NSGA-II. This is shown in Table 

5. In large-scale ones, MOHCG is superior to NSGA-II in seven problems. We can conclude 

from Tables 5 and 6 that the MOHCG can find the diverse Pareto solutions in the solution 

space.   

 

Table 5. DM measure for small sized instances 

Problem characters NSGA-II MOHCG 

4-4-4-5-2-2 2.4240e4 2.5923e4 

5-5-4-6-4-3 1.0496e3 1.4232e3 

5-6-5-20-4-3 1.6538e3 1.8409e3 

6-6-6-8-3-4 1.3784e3 1.5226e3 

7-8-8-10-4-3 1.7771e4 1.8994e4 

8-7-9-12-2-3 1.1243e3 2.3710e3 

10-10-10-10-4-4 2.6869e3 3.5351e3 

10-10-10-5-4-3 1.4192e3 1.6148e3 

11-11-11-15-2-2 1.3227e3 1.5567e3 

12-12-10-15-3-4 1.6976e3 1.9243e3 

Average 5.4096e3 6.057e3 

 

 

 

Table 6. DM measure for medium/large sized instances 

Problem characters NSGA-II MOHCG 

15-15-15-25-4-4 2.0413e3 1.0493e3 

15-15-15-30-5-4 2.04656e3 2.1228e3 

20-18-20-30-5-4 1.6284e3 5.9314e4 
20-20-18-25-5-5 2.2975e3 2.6382e3 

20-20-20-40-4-4 4.7456e4 5.7896e4 

20-20-20-40-5-5 2.01888e3 2.2730e3 

20-25-25-50-3-3 2.8253e3 2.6624e3 

20-25-25-100-3-3 3.7153e3 3.3222e3 

30-25-25-100-2-2 6.4085e4 6.5223e4 

30-30-30-150-3-5 1.4531e5 1.6572e5 

Average 27.3702e3 36.2114e3 

 

Zitzler and Thiele [23] proposed a comparison metric, named space covered. This metric 

estimates the size of the space covered by Pareto solutions. For bi-objective problems in 

phenotype space, each Pareto solution has two values for objective functions (i.e., 1( )if x , 

2 ( )if x ),  so each dominated solution represents a rectangle in the phenotype space.  

The results in Tables 7 and 8 show that MOHCG outperforms NSGA-II with respect to space 

covered measure. In most instances, the proposed MOHCG performs better than NSGA-II.  
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Table 7. SC measure for small-sized instances 

Problem characters NSGA-II MOHCG 

4-4-4-5-2-2 1.7785e13 1.6343e13 
5-5-4-6-4-3 2.4526e9 2.7826e9 

5-6-5-20-4-3 6.0411e11 5.9899e11 

6-6-6-8-3-4 2.99321e9 3.1132e9 

7-8-8-10-4-3 2.3212e10 1.9888e10 

8-7-9-12-2-3 1.6863e10 1.8821e10 

10-10-10-10-4-4 3.9894e9 2.05050e9 

10-10-10-5-4-3 1.012e12 3.9823e12 

11-11-11-15-2-2 9.8734e9 1.3223e10 

12-12-10-15-3-4 5.8623e9 1.0243e10 

Average 19.4608e11 20.9929e11 

 

Table 8. SC measure for medium/large-sized instances 

Problem characters NSGA-II MOHCG 

15-15-15-25-4-4 1.9523e10 2.3692e10 
15-15-15-30-5-4 6.4723e10 1.3034e11 

20-18-20-30-5-4 5.3214e10 7.5654e10 

20-20-18-25-5-5 3.5634e10 5.6534e10 

20-20-20-40-4-4 5.1014e12 5.9432e12 

20-20-20-40-5-5 4.5910e10 8.9843e10 

20-25-25-50-3-3 1.9994e11 2.1564e11 

20-25-25-100-3-3 1.7692e12 3.2224e12 

30-25-25-100-2-2 2.4989e15 1.0096e15 

30-30-30-150-3-5 5.0567e15 6.3231e15 

Average 756.12e12 1634.17e12 

 

In the coverage metric, two non-dominated sets of solutions obtained by algorithms are 

compared with each other. Let , 'x x x is a two sets of Pareto solutions obtained with each 

algorithm. The function CM maps the pair (x, x') to interval (0, 1) [23]: 

 ' '; : '
( , ')

'

a x a x a a
CM x x

x

 
  

 

The results summarizes in Tables 9 and 10 for this measure. For small-sized instances 

illustrated in Table 9, the MOHCG is able to generate Pareto solutions that dominate 12% of 

the ones generated by NSGA-II. When MOHCG is compared with NSGA-II, it is able to 

generate more than 78%, which is better than 12% which is generated by MOHCG. For large 

scale instances also NSGA-II resulted superior dominating more than 0.89% of the estimated 

Pareto solutions obtained by MOHCG.   

 

 

Table 9. Coverage of two sets average value for small-sized problems 

x/x' NSGA-II MOHCG 

NSGA-II 0 0.7823 

MOHCG 0.121 0 
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Table 10. Coverage of two sets average value for medium/large sized problems 

x/x' NSGA-II MOHCG 

NSGA-II 0 0.8934 

MOHCG 0.1667 0 

 

Figures 8 and 9 are the sample Pareto solutions obtained with MOHCG in small and 

medium/large-sized problems for instance numbers 10 and 17. 

 

 
Fig 8. Pareto solutions obtained for problem 10 

 

 

 

 
Fig 9. Pareto solutions obtained for problem 17 
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5. Conclusion  

In this work, a bi-objective new mathematical model for a waste collection transportation 

vehicle routing problem was addressed. An efficient representation for this problem based on 

order was proposed that decreases computational time and complexity as much as possible. 

All constraints were addressed in a construction algorithm. For traveling distance constraints 

that were not addressed in the construction algorithm, a penalty function was defined and one 

solution penalized if traveling distance limitation was exceed. In this representation, four 

main components of problem were sorted in chromosomes formation and operators 

generating new solutions or updating culture were applied on these chromosomes. When all 

solutions were considered as feasible solutions applying of some operators, such as crossover 

and mutation, would be easy and executable. This new representation was implemented in 

two meta-heuristics, namely NSGA-II and MOHCG, which were presented in this paper. In 

order to show the effectiveness of proposed algorithm several test instances were conducted 

and the results were compared with each other with respect to six comparison metrics. This 

experiments showed the effectiveness of the proposed algorithm compared with NSGA-II 

algorithms which is one of most frequent and effective multi-objective algorithms. For 

example in diversification metric, all small-sized instances showed that the MOHCG was 

better than NSGA-II. In other comparison metrics, MOHCG showed the acceptable results 

compared with NSGA-II. For the future research, we suggest to combine available constraints 

with other real world constraints. For the reason of importance of time in waste collection 

problems, time is a critical factor and the time windows constraint can be added to the 

considered problem. Also, researchers can use other multi-objective evolutionary algorithms 

and compare their results with each other.  
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