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A B S T R A C T 

   Failure Modes and Effects Analysis (FMEA) is being widely used to detect and eliminate known 

and/or potential failures, problems, errors and so on from system design, process, and/or service, 

before they reach the customer. It can be done by calculating the risk priority number which is the 

product of three factors: occurrence, severity and detectability. A lot of efforts have been made to 

overcome the shortcomings of the crisp RPN calculation and extend it to fuzzy environment. In this 

study, the presented fuzzy approach allows experts to describe the variables of risk priority number 

using linguistic terms by applying the method of fuzzy axiomatic design (FAD). At the final part of 

this paper a hypothetical case study demonstrated the applicability of the FMEA model under fuzzy 

environment. 
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1. Introduction  

  Failure modes and effects analysis (FMEA) is a technique which is widely used to identify 

prioritize and eliminate or reduce the potential modes of failures, errors, problems and so on 

from system, process and design before reaching the customer[1- 5]. 

 This structured method provides essential information for predicting reliability and design 

of a product or process. According to Chapter5 of BritishStandard5760 [6], FMEA is a 

reliability analysis technique that tries to identify the failures affecting on the functionality of 

a system in its defined range [7].  

 

A key objective of FMEA is to identify, evaluate and rank potential failure modes using risk 

priority number (RPN) computed by multiplication of three risk factors such as occurrence 

O), severity (S) and detectability (D) [4].  
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In other words: 

             𝑅𝑃𝑁 = 𝑂 × 𝑆 × 𝐷 (1) 

Where O represents the frequency of failures, S shows the severity of the failures and D 

indicates difficulty of detection of the failure mode. 

These three risk factors are evaluated on a scale of 10 units, described in Tables1-3. 

  

Table 1. Crisp rating for occurrence of a failure 

Probability of failure Possible failure rates Rank 

Extremely high: failure almost inevitable        ≥ 1 in 2 10 

Very high 1 in 3        9 

Repeated failures 1 in 8 8 

High 1 in 20 7 

Moderately high I in 80 6 

Moderate 1 in 400 5 

Relatively low 1 in 2000 4 

Low 1 in 15000 3 

Remote 1 in 150000 2 

Nearly impossible ≤ 1 in 1,500000 1 

 

 

Table 2. Crisp rating for severity of a failure 

Effect Criteria: severity of effect Rank 

Hazardous Failure is hazardous, and occurs without warning. It suspends 

operation of the system and/or involves non compliance with 

government regulations 

10 

Serious Failure involves hazardous out comes and/or non compliance 

with government regulations or standards 

9 

Extreme Product is in operable with loss of primary function. The system is 

inoperable 

8 

Major Product performance is severely affected but functions. The 

system may not operate 

7 

Significant Product performance is degraded. Comfort or convince functions 

may not operate 

6 

Moderate Moderate effect on product performance. The product requires 

repair 

5 

Low Small effect on product performance. The product does not require 

repair 

4 

Minor Minor effect on product or system performance 3 

Very minor Very minor effect on product or system performance 2 

None No effect 1 
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Table 3. Crisp rating for detectability of a failure 

Detection Criteria: likelihood of detection by design control Rank 

Absolute uncertainty Design control does not detect a potential cause of 

failure or subsequent failure mode; or there is no 

design control 

10 

Very remote Very remote chance the design control will detect a 

potential cause of failure or subsequent failure mode 

9 

Remote Remote chance the design control will detect a 

potential cause of failure or subsequent failure mode 

8 

Very low Very low chance the design control will detect a 

potential cause of failure or subsequent failure mode 

7 

Low Low chance the design control will detect a potential 

cause of failure or subsequent failure mode 

6 

Moderate Moderate chance the design control will detect a 

potential cause of failure or subsequent failure mode 

5 

Moderately high Moderately high chance the design control will 

detect a potential cause of failure or subsequent 

failure mode 

4 

High High chance the design control will detect a 

potential cause of failure or subsequent failure mode 

3 

Very high Very high chance the design control will detect a 

potential cause of failure or subsequent failure mode 

2 

Almost certain Design control will almost certainly detect a 

potential cause of failure or subsequent failure mode 

1 

 

A design system of a process or product can have multiple failure modes or multiple 

causations. In these situations, any failure mode or cause needs to be evaluated and prioritize 

based on its risk in such a way that the failure modes with the highest risk (most risky), must 

have the highest priority (the highest RPN). 

Crisp RPNs used in this technique has been criticized considerably for various reasons, some 

of these reasons are mentioned as follows [1-5]. 

 Different combinations of O, S and D may produce exactly the same value of RPN, 

although their hidden risk implications may be totally different. For instance, two 

different failures with the O, S and D values of 2, 3, 2 and 4, 1, 3, respectively, have 

the same RPN value of 12. 

 The relative importance among the three risk factors occurrence, severity, and 

detection is not considered as they are accepted equally important. 

 It is mostly difficult for O, S and D to be precisely evaluated. Usually, information in 

FMEA is expressed with the aid of some linguistic terms like very high, possible and 

etc. 
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To address these deficiencies, fuzzy logic has been applied widely in FMEA ]4]. In 

addition, we cited the following reasons for applying fuzzy logic [1]: 

 Since all the data associated with FMEA techniques are based on human language and 

can be promoted by experienced professionals, working with them on fuzzy logic are 

more acceptable and comfortable. 

 This logic also allows the use of inaccurate data and this enables it to include many 

different cases. 

 Fuzzy FMEA applies and manages both quantitative and qualitative data compatibly 

and allows us to combines occurrence, severity and detection of failures in a flexible 

structure. 

In this paper, firstly we present a brief review on failure modes and effects analysis in fuzzy 

environment. Then we express a brief introduction of axiomatic design (AD) and its 

applications in ranking problems. Later in this section, we state the Buckley fuzzy AHP to 

determine the weight of the risk factors i.e. occurrence, severity and detectability. 

Applying FAD to determine the failure modes have been explained in methodology section. 

To clarify the proposed method, we present a hypothetical case study with sensitivity analysis 

and we compare the obtained results with the results of TOPSIS method. In the fourth 

section, the discussion and conclusion on this approach are provided. 

1.2. Common Evaluation Methods 

Conventional methods of fuzzy risk assessment algorithms can be classified into five 

following methods [5]: 

1) Multi-Criteria Decision Making (MCDM) 

2) Mathematical programming (MP), 

3) Artificial intelligence (AI) 

4) Hybrid Approaches 

5) Other approaches 

Some of them are mentioned below. 

1.2.1. MCDM 

Braglia et al. [8] proposed an alternative method of multi-criteria decision making 

technique called fuzzy Technique for Order Preference by Similarity to Ideal Solution 

(TOPSIS) for FMECA. In This method, causes of failure are considered as the alternatives 

that must be ranked and the risk factors O, S and D related to a failure mode is also 

considered as the criteria for ranking. In The proposed fuzzy TOPSIS method, the 

corresponding importance weights of risk factors are considered as triangular fuzzy numbers, 

rather than crisp numbers, and this helps us to rank the failure causes with the simple 

interpretation. 
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Liu, Liu, Liu, and Mao [3] applied a method called “VIKOR “to rank acceptable priority 

of failure modes based on risk factors in FMEA. In this model, triangular or trapezoidal fuzzy 

numbers were used to express linguistic variables that are the basis for assessing the rates and 

weights of risk factors O, S and D. 

1.2.2. Combined Methods 

Liu et al [2] proposed a model of risk priority for FMEA with the aid of Fuzzy Evidential 

Reasoning (FER) and the gray theory. FER method was used for modeling variation and 

uncertainty assessment data of FMEA team members and gray analysis was applied for the 

determination of risk priorities of failure modes. 

Kutlu and Ekmekçiog˘lu [1] proposed a fuzzy approach that allows experts to use 

linguistic terms for evaluation of O, S, and D for FMEA by applying combined fuzzy 

TOPSIS and fuzzy AHP. In this study, a fuzzy AHP method was utilized to determine the 

weight vector of risk factors, then with the help of language scores for all failure modes of 

risk factors and the weight vector of risk factors, fuzzy TOPSIS was used to get scores of 

potential failure modes, which had been ranked for prioritization of failure modes. 

2. Axiomatic Design 

Axiomatic design was proposed in 1990 by Su [9] based on the scientific basis of rational 

and logical processes in order to improve design activities. The main purpose of axiomatic 

design is creating a thought process to make a new design or improvement of existing 

projects. 

Axiomatic design uses two axioms to improve a design. Axioms are facts that are true for 

all observations and for them there is no such violation. 

1. Independence axiom 

2. Information axiom 

Independence axiom: this axiom implies that the independence of Functional 

Requirements (FR) should always be kept. Functional requirements are features that are 

expected from the designed product. 

Information axiom: As mentioned above, if there are more than one alternative which 

can satisfy the functional requirements and the first axiom, the best alternative is the one 

which have the least possible information content. Here information is meant satisfying the 

desired functional requirements. The alternative which has the greatest chance to satisfy these 

requirements is selected as the best. 

If the information related to functional requirement of the ith criteria “FRi” is shown byIi, 

its value is expressed by Equation (2) that pi is the probability of satisfying “FRi”                

[10 and 11]. 
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(2) Ii = log2(
1

pi
) = −log2(pi) 

Equation (3) presents the sum of them for all functional requirements of a specific plan: 

In this case, if the amount of Isystembecomes unlimited, then the system or plan will never 

work. 

This probability is actually the chance that the system can achieve what it is intended to 

reach as tolerances by designers (design range). 

 
Figure 1. Assumption of uniform probability density function for design range and system range 

 

Hence, Equation (4) can be obtained for uniform distribution. And the amount of 

information can be calculated from Equation (5): 

(5) Ii = log2

common range

system range
 

And if the variable is continuous, the probability of pi is obtained as follows [10], [11]; 

Figure 2 indicates the desired level of design and the amount of information can be 

obtained by taking logarithm in base 2 of the reverse value of the shaded area. 

 

(3) Isystem = ∑ log2

n

i=1

(
1

pi
) = − ∑ log2

n

i=1

(pi) 

(4) pi =
common range

system range
 

(6) pi = ∫ ps

dru

drl

(FRi)dFRi 
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Figure2. Continuous density function for the system range and the uniform function for design range 

 

 

2.1. The Fuzzy Second Axiom 

When the information available is inaccurate, then, the second axiom can be extended to 

fuzzy sets. In this case, system range and design range can be presented by triangular or 

trapezoidal fuzzy numbers. 

In this case, the amount of information is calculated by taking logarithm in base of 2 from 

the area of the fuzzy triangular number corresponding to the system range divided by 

common area of the triangular numbers of system and design range. Equation (7) shows how 

to perform calculations [10-15]. 

(7) I = log2

TFN of system design

common area
 

If we specify the weight of wi to criterion number 'i' and the informational value of an 

option related to criterion number 'i' is equal toIi, then the informational value of this option 

related to all criteria is given by Equation(8)[11 ,15]. 

(8) I = ∑ Ii × wi

j

i=1
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Figure 3. The common area of system and design ranges 

 

Now all of the above description on the second axiom (information axiom) can be used in 

the multi-criteria decision-making, such that an alternative of a system and design range can 

be considered as a criterion and the best plan is the one that has the least amount of possible 

information. Some studies such as comparison of advanced manufacturing systems [12], 

support system for material handling equipment selection [13], selection of equipment [14], 

and etc., have been done in this area of research. 

These kinds of multi-criteria decision makings have been developed and generalized to the 

case of hierarchical fuzzy multi-attribute decision making method [11] and design a support 

system based on information axiom [15]. 

2.2. Ranking Problems 

We can use the second axiom as TOPSIS multi-criteria decision making in ranking 

problems [11 and 15]. In this case, the attributes are divided into two categories, “cost” and 

“benefit”. Benefit is considered as a fuzzy number with α = 0, μ (α) = 0. 

Upper bound of benefit is defined as μ(θ) = 1, θ = β = Xmax  where Xmax  represents the 

upper bound of benefit among the alternatives; for cost also, we can defineα = 0, μ(α) =

1,θ = β = Xmax, μ(θ) = 0whereXmax  indicates the upper bound of costs related to 

alternatives. In this case, by calculating information content of decision making area and 

alternatives using Equation(7)we can rank alternatives. Figures 4 and 5 represent this matter. 

 
Figure 4. Ideal design range for benefit attributes 
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Figure 5. Ideal design range for cost attributes 

 

For example suppose that the design range and system range are as shown in Figure 6. 

 
Figure 6. Ideal design range and system range 

 

We calculate the common area of design range and system range to obtain amount of its 

information using Equation (7). 

The common area shown in Equation (11) can be obtained using Equations (9) and (10). 

If the design and system range is considered as shown in Figure6, then the amount of 

information can be calculated as follows: 

(9) 
h2

h3
=

c

d − e
 →  

h2

h3 + h2
=

c

d − e + c
 →  h2 =

c

d − e + c
 

(10) 
h1

h4
=

a

d − e
 →  

h1

h4 + h1
=

a

d − e + a
 →  h1 =

a

d − e + a
 

(11) common area =
1

2
(

c2

d − e + c
−

a2

d − e + a
) 

(12)  I = log2

c − a

(
c2

d−e+c
−

a2

d−e+a
)
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When using AD method, assessment of alternatives can be defined using fuzzy or crisp 

sets. The functional requirement of attributes must be defined with fuzzy or crisp sets, along 

with evaluation of alternatives. If the assessment of alternatives or criteria all have the same 

property, i.e. all are fuzzy or all are crisp, the problem must be solved with classic or fuzzy 

axiomatic design. If the problem includes both fuzzy and crisp assessment, then neither the 

AD nor the FAD can help us to solve it. In this case, the ratio which is called the information 

content is obtained using Equation (13). 

(13) I = log2

1

μ(xi)
   ,   μ(xi) = {

xi − α

𝛳 − α
  benefit

𝛳 − xi

𝛳 − α
       cost

 

In fact, for a system whose assessment is accurate, a fuzzy number is an imaginary 

concept and its information content is calculated by using Equation (13). Figure 7 illustrates 

this matter. 

 
Figure 7. Triangular fuzzy range design and crisp range system 

2.3. Fuzzy AHP to Determine Risk Factors for the Occurrence, Severity and 

Detectability 

To determine the weights of three criteria of occurrence, severity, and detectability, 

analytic hierarchy process can be applied. This technique is a multi-criteria decision making 

method based on pairwise comparisons that have the capability of using both qualitative and 

quantitative data and its use does not require complex calculations. The purpose of this 

method is to take advantage of expert knowledge for decision making. But the traditional 

methods, cannot be utilized when the knowledge of experts is in linguistic terms. Hence, it is 

generalized to the fuzzy environment with the help of some methods introduced by 

Laarhoven, Pedrycz’s and Buckley. In this study, because of the simplicity of the method 

introduced by Buckley, this method was used in which the steps will be as follows [11, 15, 

and 16]; 

Step1: The idea of FMEA team members about the importance of criteria weights of 

occurrence, severity and detectability is obtained to create a decision matrix and the weight 

vector. 
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Step 2: Since decision making is a team work, aggregated decision matrix is obtained. 

 In order to obtain the aggregate weights of criteria and to rank them, Equations (14) and 

(15) can be used (Equations (14) and (15) can also be replaced by any other equation with the 

use of aggregation). 

(14) S̃ij =
1

K
(S̃1

ij + S̃2
ij+. . . +S̃t

ij+. . . +S̃k
ij),    S̃t

ij = (aij, bij , cij) 

     (15) w̃j =
1

K
(w̃1

j + w̃2
j+. . . +w̃t

j+. . . +w̃k
j),    w̃t

j = (wjl, wjm, wju) 

Where k represents the number of decision makers,S̃ijindicates the rank of i'th alternative 

in terms of j'th criterion. So a fuzzy multi-criteria decision making problem with m 

alternatives and n criteria can be stated with the following matrix: 

(16) D̃ =

|

|

S̃11 S̃12 . . . S̃1n

S̃21 S̃22 . . . S̃2n

. . … .

. . … .

. . … .
S̃m1 S̃m2 . . . S̃mn

|

|

 

And the matrix of fuzzy weights is as follows; 

    (17) W̃ = [w̃1, w̃2, … , w̃r, … , w̃n] 

 

where l, m and u are respectively the lower, middle and upper limits of w̃rwhich is a fuzzy 

number. 

Step 3: The relative importance of weights can be directly determined by decision makers 

or a pairwise comparison, as described in Step 1. 

(18) C̃ =

|

|

1 C̃12 . . . C̃1n

C̃21 1 . . . C̃2n

. . … .

. . … .

. . … .
C̃m1 C̃m2 . . . 1

|

|

 

If we consider the matrix presented in Equation (18) as a pairwise comparison matrix, then 

Equation (19) can be resulted: 

(19) Cij = {

i > 𝑗,      (1,1,3), (1,3,5), (3,5,7), (5,7,9), (7,9,9)

i = j,      1                                                                                            

 i < 𝑗,      (1,1,3)−1, (1,3,5)−1, (3,5,7)−1, (5,7,9)−1, (7,9,9)−1

 

Linguistic scales for triangular fuzzy numbers are given in Table4. Now, we calculate 

fuzzy weight matrix using Buckley method with the help of Equations (20) and (21): 

(20) r̃i = (C̃i1⨂C̃i2⨂. . . ⨂C̃in)1/n 
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(21) w̃i = r̃i⨂(r̃1 + r̃2 + ⋯ + r̃n)−1 

In above Equations, cin is the fuzzy comparison of criterion'i' related to the criterion 'n' and 

ri is the comparison value of criterion'i' related to the other criteria. After obtaining 

importance weight matrix, we use a defuzzification process to convert fuzzy numbers to crisp 

ones. Therefore, firstly fuzzy numbers are converted to crisp numbers, and then normalizing 

process is done. To defuzzify fuzzy numbers, we use centroid method, which is the most 

commonly used method in this field. 

Equation (22) represents both defuzzification and normalizing process. 

(22) wr =
w̃r

∑ w̃j
n
j=1

=
wrl + wrm + wru

∑ w̃j
n
j=1

 

where n indicates the number of criteria andwr is the weight of r'th criterion which is a 

crisp number. 

 

Table 4. Linguistic scale for weight matrix 

 

3. Methodology 

Fuzzy logic is a tool to convert ambiguous sense of human decision making capabilities to 

mathematical formulas. In addition, a significant demonstration of the size of uncertainty and 

vague concepts that are expressed in natural language, so fuzzy multi-criteria decision 

making methods are preferred to overcome FMEA procedure rather than a definitive decision 

method. To determine importance of one failure mode, we propose FAD approach as follows: 

Firstly, potential failure modes are detected by a group of experts (FMEA team), then the 

comparison matrix for risk factors is made and Buckley Fuzzy AHP is used to determine the 

weight vector of risk factors. 

Then, language assessment of experts for all failure modes associated with risk factors are 

aggregated to obtain their mean value and run FAD methodology. 

Next, using the weight vector of risk factors and the system range, the common area using 

a proposed design range (see figure 8) is calculated and the area of the system range is 

obtained and the amount of information content of the failure mode is calculated. Finally, 

failure mode ranking will be done. 

 Scale of fuzzy number Linguistic scales 

Eq Equally important (1,1,3) 

Wk Weakly important (1,3,5) 

Es Essentially important (3,5,7) 

Vs Very strongly important (5,7,9) 

Ab absolutely important (7,9,9) 



63         Failure Modes and Effects Analysis under Fuzzy Environment... 

 
 

 
Figure 8. Proposed design range for ranking the failure modes 

 

Figure 9 represents the proposed fuzzy FMEA model. Overall, the most important failure 

modes are determined by the following steps: 

 

 
Figure 9. Flowchart of the proposed method 

 

Step1: Detect potential failure modes by experts (FMEA team). 

Step2: Evaluate failure modes based on risk factors and according to Table 5 and 

aggregate them. 

Step3: Obtain the decisions of experts about the relative importance of risk factors and 

aggregate them. 

Step4: Use fuzzy AHP Buckley method to determine the weight of risk factors. 
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Step5: Apply FAD method and Equations (8) and (12) to calculate the information content 

and value of each failure mode according to the proposed design range presented in Figure 8. 

Step 6: Rank the failure modes increasingly based on their information contents. 

We provide a hypothetical case study for further explain which is taken from reference [1]. 

 

4. An Illustrative Example 

The proposed methodology is applied to the production line of an SME in an automobile 

industry. Important potential failure modes (PFMs) are identified by a group of experts in an 

assembly process at the manufacturing facility as a non-conforming material (A), wrong die 

(B), wrong program (C), excessive cycle time (D), wrong process (E),damaged goods 

(F),wrong part (G), and incorrect forms (H). After determining the PFMs by using FAHP 

method (the weights for the risk factors are calculated as (0.468 0.2010.331), see [1]), experts 

linguistic evaluations for the risk factors in respect of each failure modes are obtained as 

indicated in Table 6 and the aggregated matrix is shown in Table 7. 

The fuzzy scores corresponding to these linguistic terms (system ranges) are presented in 

table 5. 

 

In the next step, using weight vector of the risk factors and the fuzzy evaluations of each 

risk factor with respect to PFMs, FAD is utilized as illustrated in Table 9. Finally, as shown 

in Table 9, the scores are ranked and results show that the most important failure mode is 

‘‘wrong process’’ (E). 

 

Table 5. Fuzzy evaluation scores for alternatives (system ranges) 

Fuzzy score Linguistic terms 

(0,0,1) Very poor (VP) 

(0,1,3)                                    Poor (P) 

(1,3,5) Medium poor (MP) 

(3,5,7) Fair (F) 

(5,7,9) Medium good (MG) 

(7,9,10) Good (G) 

(9,10,10) Very good (VG) 

 

4.1. Sensitivity Analysis 

To evaluate the sensitivity of the results to the weights of risk factors, some other 

hypothetical case studies of different weights are considered and a sensitivity analysis was 

performed where the results are shown in Figure 10 and Table 10. Table 9 shows the risk 

factor weights of the case studies. 
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Table 6. Fuzzy experts' evaluations of risk factors associated with the potential failure modes 

 

 

Table 7. Aggregated matrix 

 

4.2. Comparison with the Results of TOPSIS Method  

To verify the correctness and accuracy of the method, the results with the results of the 

implementation method in reference [1] were compared. Comparing results, it is observed 

that, except in one case which is shown in Table 11, the results are exactly the same as the 

results obtained from the fuzzy TOPSIS method. 

 

 

Table 8. Weights of risk factors corresponding to the hypothetical case studies 

 

 
 

Detection Severity Occurrence Potential failure modes 

G ،MG ،G F,F,MP MG ،MG ،F (A) Non-conforming material 

P ،MP ،MP P.MP,MP VG ،G ،VG (B) Wrong die 

P ،MP ،VP MP ،P ،MP VG ،G ،G (C)Wrong program 

G ،MG ،G MP ،F ،MP F ،MG ،MG  (D) Excessive cycle time 

G ،V ،G MP ،F ،F MG ،MG ،G (E) Wrong process 

F ،MP ،MP F ،MG ،MG MG ،G ،MG (F) Damaged goods 

P ،MP ،VP VP ،MP ،P VG ،VG ،VG (G) Wrong part 

VP ،VP ،VP P ،VP ،VP VP ،VP ،VP (H) Incorrect forms 

Detection Occurrence Severity  Potential failure modes 

(6,33,8.33,9.66) (4,33,6.33,8.33) (2.33,4.33,6.33) (A)  

(0.67,2.33,4.33) (8.33,9.67,10) (0.67,2.33,4.33) (B) 

(0.33,1,2.33) (7.67,9.33,10) (0.67,2.33,4.33) (C) 

(6,33,8,33,9.66) (4.33,6,33,8.33) (1.67,3.67,5.67) (D) 

(7.67,9.33,10) (5,67,7.67,9.33) (2,33,4,33,6.33) (E)  

(1,67,3,67,5.66) (5.67,7,67,9.33) (4,33,6.33,8.33) (F)  

(0.33,1.67,3.66) (9,10,10) (0.33,1.67,3.67) (G) 

(0,0,1) (0.0,1) (0,0.33,1.67) (H) 

Case 4 Case 3 Case 2 Case 1 Case 0 Weight of risk factors 

0.4 0.4 0.5 0.6 0.468 Occurrence 

0.2 0.3 0.25 0.2 0.201 Severity 

0.4 0.3 0.25 0.2 0.331 Detection 
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Table 9. Fuzzy FMEA analysis using FAD 

Potential failure 

modes 
Fuzzy axiomatic design 

Total 

information 

content 

 

Detection 

WD 

0.331 

Occurrence 

WO 

0.201 

Severity 

WS 

0.468 

 

(A) (6.33,8.33,9.66) (4.33,6.33,8.33) (2.33,4.33,6.33) 0.334053 

(B) (0.67,2.33,4.33) (8.33,9.67,10) (0.67,2.33,4.33) 1.0211994 

(C) (0.33,1,2.33) (7.67,9.33,10) (0.67,2.33,4.33) 1.293979 

(D) (6.33,8.33,9.66) (4.33,6.33,8.33) (1.67,3.67,5.67) 0.423513 

(E) (7.67,9.33,10) (5.67,7.67,9.33) (2.33,4.33,6.33) 0.295138 

(F) (1.67,3.67,5.66) (5.67,7.67,9.33) (4.33,6.33,8.33) 0.377719 

(G) (0.33,1.67,3.66) (9,10,10) (0.33,1.67,3.67) 1.270816 

(H) (0,0,1) (0,0,1) (0.33,0,1.67) 3.133736 

 

 

Table 10. Fuzzy FMEA analysis using FAD for all hypothetical case studies 

 

 
Figure10. Sensitivity analysis results 

 

Failure modes 
Case 0 Case 1 Case 2 Case 3 Case 4 

𝐈𝐓𝐨𝐭𝐚𝐥 

A 0.334 0.4056 0.36 0.3142 0.2969 

B 1.022 1.0233 0.9594 0.8956 1.0233 

C 1.294 1.188 1.1654 1.1427 1.3517 

D 0.4235 0.5203 0.4555 0.3907 0.3734 

E 0.2951 0.3718 0.3176 0.2635 0.2555 

F 0.3778 0.3042 0.3257 0.3473 0.4166 

G 1.2708 1.2721 1.1927 1.1134 1.2726 

H 3.1337 3.0419 3.1115 3.1811 3.1811 
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Table 11. Comparison of fuzzy TOPSIS and FAD 

Case 4 Case 3 Case 2 Case 1 Case 0 Failure 

mode FAD TOPSIS FAD TOPSIS FAD TOPSIS FAD TOPSIS FAD TOPSIS 

2 2 2 2 3 3 3 3 2 2 A 

5 5 5 5 5 5 5 5 5 5 B 

7 7 7 7 6 7 6 6 7 7 C 

3 3 4 4 4 4 4 4 4 4 D 

1 1 1 1 1 1 2 2 1 1 E 

4 4 3 3 2 2 1 1 3 3 F 

6 6 6 6 7 6 7 7 6 6 G 

 

5. Conclusion 

FMEA, designed to provide information for risk management decision-making, is a widely 

used technique in industries. In FMEA, potential failure modes are determined by three 

factors named occurrence, severity and detection. In traditional method of risk priorities, risk 

was estimated by multiplying crisp numbers, although this traditional method was criticized 

in the literature for many reasons including lack of consideration of the relative importance of 

risk factors and imprecise evaluation. Because of these criticisms, in this study, a fuzzy 

approach that is superior to the traditional approach has been considered. Fuzzy approach 

based on fuzzy axiomatic design approach is employed and used for prioritizing failure 

modes and also this method combined with Fuzzy AHP to consider the relative importance of 

risk factors. In addition, it is possible for experts to assess the risk factors for each potential 

failure modes with linguistic variables. Among the advantages of this method, considering 

the relative importance of risk factors and evaluation of these factors, either crisp or fuzzy 

can be noted. This model may be useful for providing information for decision-making in the 

context of risk management in industrial and service organizations. For further research, this 

study can be generalized to epistemic uncertainty. 
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