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A B S T R A C T  A R T I C L E   I N F O 

Blood supply chain network design isanessentialpart of the total blood 
management systems.In this paper, a mixed integer non-linear 
programming (MINLP) model for the concerned problem is 
developed. Optimizing the facility location and flows between each 
echelon of the considered supply chain is our main focus in this study. 
Also, in order to handle uncertain nature of model parameters, a mix 
robust stochastic programming approach is applied to the model. 
Finally, to test the applicability of the proposed model, a numerical 
example is proposed using random generated data and then sensitivity 
analysis is done on a model parameter which play a rolein making 
trade-off between model robustness and optimality robustness. 
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1. Introduction 

The major role of supply chain management (SCM) and supply chain network design in 
systems in the recent years has led many researches to implement its basic rules on wider 
areas to control the operations in an efficient way [1, 2]. Among the different kinds of 
facilities, determination of location-allocation of healthcare facilities is very crucial in 
maximizing the involved people’s benefits. In this field, a comprehensive studies is done by 
Papageorgiou [3] and Rais and Viana [4]. But, one of the recent papers which significantly 
focused on location-allocation of healthcare facilities, are Syam and Côté [5] which proposed 
location-allocation of specialized healthcare systems. Shariff et al. [6] proposed a Maximal 
Covering Location Problem in which healthcare facilities of a region in Malaysia has been 
studied. Also, determining the optimal characteristics (number, size and locations) of regional 
health facilities has been studied by Dökmeci [7]. 
Blood supply chain network design, as one of the key subsets of the healthcare systems, is 
one of the most ready for better management of this life-saving product. Lack of efficient 
procurement and distribution centers in such supply chains result in imposing risks to lives 
and properties. According to the American Red Cross (ARC), due to blood inventory 
shortages in 2007, approximately 28.9% of hospitals reported the cancellation of surgery in 
the United States on one or more days which affected approximately 412 patients [8]. 
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Significance and importance of the blood managing system has led researchers to focus 
particularly on this topic. However, most of the articles related to blood managing system 
focused on quality aspect of blood products rather than blood collection and distribution 
planning. To the best of our knowledge, the only similar article to our work is done by Sha 
and Huang [9] andVafaArani and Bozorgi-Amiri [10, 11]. 
Sha and Huang [9] focused on determining location-allocation of mobile blood banks in 
multi-period environment with tactical planning wherein objective functions is to minimize 
the total costs and the model is tested via a case study in Beijing. VafaArani and Bozorgi-
Amiri [10, 11] proposed a bi-objective multi period location-allocation model for blood 
facilities, considering minimization of the blood shortage and total costs in the proposed 
network. Then the model has been validated through ε-constraint method. 
Supply chain of blood products has been widely taken into considerable review by Beliën and 
Forcé [12]. Comprehensive overview of blood banking supply chain regarding various 
questions about blood banking functions and locations has been done by Pierskalla and 
Brailer [13] and Pierskalla [14]. Nagurney and Masoumi [15] addressed a mathematical 
model for a sustainable network design model for the blood supply chain. Also, location-
allocation of blood facilities has been taken into consideration by Jacobs et al. [16] in which 
facility relocation problem for the mid-Atlantic region of the ARC in Norfolk Virginia has 
been studied. Şahin et al. [17] developed several mathematical models for solving the 
location-allocation problems customized in blood services in Turkey. Cetin and Sarul [18] 
proposed a hybrid set covering model for discrete location approach as well as center of 
gravity method for continuous location models in order to determine optimum location of 
blood banks. 
Considering the given data as deterministic parameters in the mentioned papers leads to lack 
of acceptable application of the models in the real world cases. In order to cope with 
uncertainty, three different methods could be used i.e. fuzzy programming (FP), stochastic 
programming (SP) and robust programming (RP). In this paper, according to inherent 
behavior of some parameters, a two-stage stochastic programming is applied to the model. 
Stochastic programming in healthcare systems has been considered in Lin et al. [19] which 
proposed a class of stochastic multi-objective problems with complementarity constraints and 
applied it to a patient allocation problem in healthcare management. Harper et al. [20] 
proposed a discrete-event geographical location–allocation simulation model for evaluating 
different options for the service provisions using stochastic approach. A real case study has 
also been applied. 
Based on the relative gap, we present a location-allocation model for blood collection 
management under a scenario-based robust stochastic programming approach.  
The rest of the paper is organized as follows: In Section 2, problem definition and 
mathematical formulation are elaborated, In Section 3, application of the model is provided 
and finally, Section 4 is dedicated to the possible ways for future research. 
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2. Problem Description and Mathematical Formulation 

In this paper, we address a scenario in which donation can take place directly to the MCs 
or to the TCs, which then will require extra shipment from that TC to the MC at the end of 
period (see Fig.1).  
 

 
Figure 1. Flow of a single donor. 

 
The indices, parameters and variables used to formulate the problem are as follows: 
Indices 
I Set of donators 
J Set of TCs 
K Set of MCs 
Ω  Set of scenarios 
T Set of time periods 
 

Parameters 

1 2j , jc  Transportation cost between nodes j1 and j2 

 
kc′′  Establishment cost of MC 

j,kc ′  Transportation cost between nodes j and k 

θ
tDe  Total demand for blood in period tunder scenarioθ , 

θπ  Probability of scenario θ , 

ijr  Distance between nodesiand j, 

0r  Coverage radius of TC, 

ikw  Distance between nodesiand k, 

0w  Coverage radius of MC, 

jkq  Distance between nodesj and k, 

0q  Coverage radius of MC, associated to TC, 
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dd0

 Maximum capacity of TC, 

kV  Maximum capacity of MC, 

id  Maximum capacity of donation zones, 

M A reasonably large number, 

ω  Predefined percentage, 

λ  The weight value 

Variables 
t
ijX  A binary variable that takes 1 if node i is linked to node j; and 0, otherwise, 

t
ikX ′  A binary variable that takes 1 if node i is linked to node k; and 0, otherwise, 

t
jkX ′′  A binary variable that takes 1 if node j is linked to node k; and 0, otherwise, 

1 2,
t
j jy  A binary variable that takes 1 if a TC goes from j1toj2; and 0, otherwise, 

kz ′  A binary variable that takes 1 if an MC is established in node k; and 0, otherwise, 

P Number of TCs, 

t
ijs θ  Flow between nodes iand j under scenario θ at period t, 

t
iks θ′  Flow between nodes iand k under scenario θ at period t, 

t
jks θ′′  Flow between nodes jand k under scenario θ at period t, 

Z θ  The objective function value under scenarioθ. 

The mathematical model of the discussed problem is as follows: 

1 1 1

Min (1 ) | | Z = Z Z Zθ θ θ θ θ θ
θ θ θ

λ π λ π π
Ω Ω Ω

′ ′
′= = =

+ − −∑ ∑ ∑  (1) 

1 2 1 2

1 2

T J J K T J K I
t  t
j , j j , j k k jk j,k

t =1 j =1 j =1 k =1 t =1 j =1 k =1 i =1

Z = y c + z c + s cθ θ′′ ′′ ′∑∑∑ ∑ ∑∑∑∑
 

(1') 

s.t.  

1 2
1
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=
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j j
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The objective function (1) minimizes the tradeoff between the feasibility robustness (i.e., the 
first term) and the optimally robustness (i.e., the second one), in which Zθ can be computed as 
the equation number (1')that calculates the total costs in the network in each scenario type. 
Constraint set (2) is related to the TC’s movement in the course of time.Constraint set (3) 
defines the required number of TCs. Constraint (4) assures that only a temporary facility like 
j1 can be moved to another location if there exists a temporary facility in previous period 
located in j1. In each period, every group of donators can donate only to a main facility or 
temporary ones (not both of them) that is assured via constraint (5). Constraint sets (6)-(8) 
impose the coverage limitations. Constraint sets (9)-(11) link the flow variables to the 
allocation ones. Constraint sets (12)-(15) impose a capacity limitation on MCs, donation 
zones, and TCs, respectively. Constraint (16) indicates that at for each scenario, a predefined 
percentage should be covered. Equation (17) is the balancing of flow constraint.Constraint 
sets (18) and (19) are the non-negativity constraints. Noteworthy, the probabilities assigned to 
each scenario indicates the importance of individual scenario under inherent uncertain nature 
of problem’s environment [21]. 

A. Linearization of the model: 
As could be seen, objective function and equation (16) are nonlinear. Hence, in order to 

introducing linear counterpart of the objective function, using −+
θθ QQ ,  as positive variables 

we will have: 

Also, for transforming the equation (15) to its linear counterpart, it could be replaced with 
equations (23)-(26) (see [22]) and the rest of the constraints will remain unchanged: 

3. Computational Experiments 

For evaluation of the applicability of the proposed model, test problems are generated based 
on Table 1, in which range of the required parameters are defined. Also, Tables 2 represents 

, , 0, int,θ θ′ ≥t t
ij iks s P  , , , , .θ∀i j k t  (19) 

1 1

Min (1 ) ( ) Z = Z Q Qθ θ θ θ θ
θ θ

λ π λ π
Ω Ω

+ −

= =
+ − +∑ ∑  (20) 
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π
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+ −
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+ − ≥
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1
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1 1, , , ,1+ − ≤t t
j j k j j ky z l  , , ,∀j k t  (25) 

1, , {0,1},∈t
j j kl  
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different values of demands under 4 different scenarios. Test problems are solved using 
GAMS 22.9 on a core i5 computer with 4GB RAM. 
 

Table 1. The involved parameters and ranges. 
Variables Ranges Variables Ranges 

rij  ~U [50, 1000] vk ~U [200,400] 

wik ~U [50, 1000] di ~U [300, 2500] 

qjk ~U [50, 500] W ~U [0.7, 0.9] 

r0 ~U [100, 150] cj1j2 ~U [50, 100] 

w0 ~U [10, 50] ck ~U [1500, 3500] 

q0 ~U [10, 50] cjk ~U [0.01, 0.2] 

dd0 ~U [200, 500] 
  

 

 

Table 2. The values of demand under scenarios. 
Scenarios Scenario probability Demands 

1 0.4 ~U [100, 500] 

2 0.2 ~U [80, 420] 

3 0.3 ~U [60, 310] 

4 0.1 ~U [20, 220] 

 
Here it should be noted that, scenarios could be translated as various probable disasters which 
its occurrences' probability as well as intensity forms the abovementioned Table. For example 
when an earthquake occurs, based on its Richter magnitude scale, different level of demands 
will be realized throughout the given territory.  
Using data from the model under each scenario as a nominal data for the deterministic (Det) 
model, both deterministic and the robust stochastic (RS) objective function values have been 
evaluated and are computed (see Table 3). As we can see, the objective function value of the 
stochastic model is higher than the mean values of the deterministic one under each scenario. 
 

Table 3. The objective values of models. 

Problem size I×J×K×T 
Objective value of objective function under 0.9λ =  

Det. RS. 

8×5×3×4 2354.290 2105.415 

 
The difference between the Det and the RS values can be called as the expected value of 
perfect information (EVPI), which represents the loss of profit due to the presence of 
uncertainty [23]. 
EVPI = 2354.290 - 2105.415 = 248.875 
Table 4 shows the movements of the temporary facilities through the planning horizon. As 
can we can see, in each period, from the five candid locations for temporary centers, only 
three of them are needed to cover 0.9 of the total demands under Sto model. 
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 Table 4. The movements of the temporary facilities through the planning horizon. 

 j1 . j2 t=1 t=2 t=3 t=4 

1.1   1 1   

1.5 
   

1 

2.2 
   

1 

2.5 1 1 1 
 

5.1 1 
   

5.2 1 1 1 
 

5.3       1 

 
A sensitivity analysis on the different values of the λ vs. total costs has been applied and can 
be seen in Figure 2. As could be seen, with increasing the weight value of λ, the RS model is 
tend to fulfill its feasibility robustness rather than optimally one; while similarly, we can see 
with decreasing the value, the RS model reduces the objective function value. The mean 
values of the objective functions for the Det model under each scenario is also presented in 
the Figure 2. It can be concluded that with the values of λ lower than 0.85, the RS model 
should be implemented due it lower costs, while for the values greater than 0.85 which 
imposes a great impact on the optimally robustness rather than feasibility, applying the RS 
model does not have any economic justification. 

 
Figure 2. Sensitivity analysis for values ofλ 

4. Conclusions 

To response the demand for blood, this paper with regarding location-allocation of blood 
facilities (fixed and temporary) addresses better management of such supplies. Because of 
seasonal changes in demand, multi-period location-allocation of facilities has taken into 
consideration and for coping uncertainties; two-stage stochastic programming is applied. 
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With regarding to minimization of total costs in the proposed flow, our model as integrated 
strategic and tactical planning decisions, determines both optimal numbers of main and 
temporary facilities, in addition to assigning donators to the facilities and location of blood 
centers. Solving the larger sizes of problem using heuristic/meta-heuristic methods, applying 
other novel methods to cope with the parameters uncertainty and applying rolling horizon 
approach to the model are other research avenues could be explored by interested readers. 
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