

Volume 1, Number 3, 2012

International Journal of Research in Industrial Engineering

journal homepage: www.nvlscience.com/index.php/ijrie

A New Method to Organizational Ranking: Integrating BSC and DEA

H. Golpîra^{1,*}, A. Mohajeri²

¹Department of Industrial Engineering, Islamic Azad University, Sanandaj Branch, Sanandaj, Kurdistan, Iran ²Department of Industrial Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran

ARTICLE INFO

Article history : Received: August 10, 2012 Revised: October 28, 2012 Accepted: December 15, 2012

Keywords : Balanced Scorecard, DEA, Ranking method.

ABSTRACT

Nowadays, managers tend to compare their organizations with the others as well they want to have benchmarks. Benchmarking should be based on correct updated organizational critical factors. Balanced scorecard (BSC) is the tool to translate the organizational strategic goals into the operational critical factors by its strategy map. It individually may not use as the tool for organizational comparison. Data envelopment analysis (DEA) is essentially used to evaluate decision making units (DMUs) from the best possible relative efficiency. But it's incapable of defining its input and output indexes efficiently. So, in this paper the most important strategic factors obtained from BSC are employed as the input data for DEA. This may lead us to a comprehensive benchmarking method to attain the reliable appropriate results for each organization in each period. Finally, the proposed method is practically tested and the results are illustrated in the following paragraphs.

1. Introduction

The BSC model is a widely used method for organizational performance measurement. The method is first introduced by R. Kaplan in 1980 and by Kaplan and Johnson in 1987 [1]. But its university based idiom was denoted by Kaplan and Norton in 1992 [2, 3]. Despite, it is not completely emphasized on balanced measurement and related factors in any publication of Kaplan and Norton, Cobbole, and Lawrie [4] highlighted it in 2003 and finally, the strategy plan is used to complete the model in 2004 [3, 6].

The model is based on four fundamental factors: (1) Financial (2) Internal business process (3) Customer (4) Innovation and learning to found a relation between strategic goals and operational controls which are illustrated in Fig. 1 [2-6]. The model is establishes balance between financial and nonfinancial, short term and long term and internal and external goals. It balances the anterior and posterior factors in some cause and effect chains [7].

The key practical steps involved in developing a BSC are: (1) Develop organization mission, vision and strategy (2) Confirm the BSC role in performance management framework (3) Select the scorecard viewpoint (4) Review suitable background materials (5) Conduct executive interviews (6) Create strategy map (7) Gather feedback (8) Improve performance measures (9) Develop initiatives (10) Develop the continuing implementation plan [5, 6].

Data envelopment analysis (DEA) was introduced by Charnes, Cooper, and Rhodes [8], often evaluates decision making units (DMUs) from the best possible relative efficiency [9]. Myoungand Sang [10] used DEA to define the time path of returns to scale of all publicly held U. S. computer companies over the time period 1980-1991. Runsheng [11] discussed a new approach to productive efficiency evaluation in forest products industries, using DEA. Sevcovic et al. [12] proposed DEA for the assessment of efficiency of a large structured network of bank branches in Slovakia. Emrouznejad and Banker [13] introduced the theory and application of DEA to efficiency and productivity measurement. Henderson and Zelenyuk [14] and Yang [15] used the DEA for assessing Latvian and Canadian bank branch operating efficiency. Malhotra [16] illustrated the application of DEA to analyze the financial performance of the 7 largest retailers in the United State by benchmarking a set of financial ratios of a firm against its peers. Sependoust [17] introduced the DEA method for efficiency measurement of housing sector in Iran. Wen-Chih and Chen-Fu [18] used the DEA for measuring the performance of wafer fabrication operations in Taiwan. Lee et al. [19] used the DEA for measuring efficiency in the Malaysian banking industry. Rahimi et al. [20] applied the DEA to analysis of the efficiency and optimal consumption of resources in selected hospitals in Urmia province.

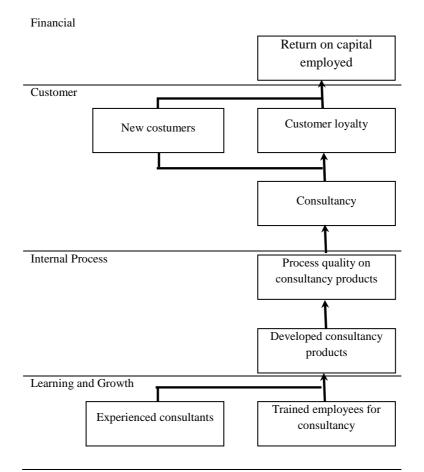


Figure 1. Fundamentals of BSC and its Cause-and-effect relationships

41 A New Method to Organizational Ranking: Integrating BSC and DEA

Entani, et al. [21] and Wang, et al. [22] developed a model to consider both the optimistic and pessimistic points, until Wang and Luo [9] proposed their model based on the relative closeness (RC) to the ideal DMU (IDMU) that uses the two distinctive efficiencies as well as the TOPSIS model in multi-attribute decision making (MADM). Then the RC factor may be used for overall ranking of all DMUs, easily [9, 23].

One of the most important drawbacks of the DEA is its weakness on identifying factors to rank the DMUs. In this paper, the BSC method is used to determine two or three most important factors in any field of its four basic fundamental factors. The factors are then used as the input data for the DEA method to rank complex organizations and enhance the reliability and flexibility of the method for benchmarking.

2. Proposed Method

The DEA has no tools to finding effective factors, especially in the field of organizational ranking and this weakness may decrease its reliability. In this paper, the strategy map that is established by BSC is used to solve this weakness by defining most relevant factors as the input of the following DEA model:

Assume that there are n DMUs to be evaluated. Each of them consumes m inputs, denoted by $x_{ij}(i = 1,...,m, j = 1,...,n)$, to produce s outputs denoted by $y_{rj}(i = 1,...,s, j = 1,...,n)$. Then, an IDMU may be defined as a virtual DMU that can use the least inputs, $x_i^{\min}(i = 1,...,m)$, to produce the most outputs, $y_r^{\max}(r = 1,...,s)$, while an anti-ideal DMU (ADMU) may defined as a DMU, which consume the most inputs, $x_i^{\max}(i = 1,...,m)$, to generate the least outputs, $y_r^{\min}(r = 1,...,s)$. To completing the model, the LP model shown in Eq. (1) and Eq.(2) must be solved for all DMUs such as DMU0 to calculate the $\theta_{j_0}^*, \phi_{j_0}^*$, where j0 is the DMU under evaluation (denoted by DMU0), u_r, v_i are decision variables, \mathcal{E} is the non-Archimedean infinitesimal, θ_{IDMU}^* is the optimum efficiency of IDMU that may calculated by Eq. (3) and φ_{ADMU}^* is the worst efficiency of the ADMU that may calculated by Eq. (4). Then the final ranking is achieved by Eq. (5). It is clear that the bigger the RC_{i0} value is the-better-the-performance of DMU₀.

3. Empirical Example and Conclusion

The data for this study are collected in winter 2011 in Kermanshah, Iran. The data included 53 creditable performance indexes that factor analyzing in SPSS software classifies them into four levels of factors. Data are classified as: (1) 10 financial indexes, (2) 7 internal business process indexes, (3) 7 customer Indexes, (4) 24 innovation and learning indexes. This classification is shown in Table 1. The indexes which are selected to construct the organizational strategic map are recognized by asterisks.

Indexes are given to experts to give a privilege to them according to organizational predefined strategies. Consequently, Five Point Likert and Factor analysis methods are used to demonstrate the classification. Then the most important indexes in each four levels are chosen. After linking the factors in BSC procedure, the strategy map is given as shown in Fig. 2. One can see that the output of the BSC method is the indexes which are cited as the

important relative critical factors of organization. These indexes are used as the outputs for the DEA method. Seven inputs which are strongly related to these outputs are also selected and the real data are collected from the 10 sub-organization of the Kermanshah Water Regional Organization as shown in Table 1. Finally, DEA is used to rank these suborganization using factors which are indicated in strategy map. The results are illustrated in Table 2.

What is indicated in column five (RC) of Table 3 shows the difference of the suborganizations. So managers not only can clearly recognize the differences between their organizations and the others, but also the related distances can show the intensity of these differences. This information helps the manager to have a better view to perceive the position of his/her organization and enhance an ability to compare it with other similar ones in terms of the organizational strategic goals that may change and updated over its life cycle. This ranking is based on the same other organizations that make it possible and acceptable for any of them. The ranking shows that DMU₂ is the better one. In addition, the distance among the index RC of 4th DMU to 10th one is not as important as what is seen in first three DMUs.



Figure 2. Strategy map of Kermanshah Regional Water Organization

$$Max \quad \theta_{j0} = \sum_{r=1}^{s} u_{r} y_{rj0}$$

$$S.T. \quad \sum_{i=1}^{m} v_{i} x_{ij0} = 1$$

$$\sum_{r=1}^{s} u_{r} y_{j}^{\max} - \sum_{i=1}^{m} v_{i} (\theta_{IDMU}^{*} x_{i}^{\min}) = 0$$

$$\sum_{r=1}^{s} u_{r} y_{rj} - \sum_{i=1}^{m} v_{i} x_{ij} \leq 0 \quad j = 1, ..., n$$

$$u_{r}, v_{i} \geq \varepsilon \quad \forall r, i$$
(1)

$$\begin{aligned} &Min \qquad \varphi_{j0} = \sum_{r=1}^{s} u_{r} y_{rj0} \\ &S.T. \qquad \sum_{i=1}^{m} v_{i} x_{ij0} = 1 \\ &\sum_{r=1}^{s} u_{r} y_{j}^{\min} - \sum_{i=1}^{m} v_{i} (\varphi_{IDMU}^{*} x_{i}^{\max}) = 0 \\ &\sum_{r=1}^{s} u_{r} y_{rj} - \sum_{i=1}^{m} v_{i} x_{ij} \leq 0 \qquad j = 1, ..., n \\ &u_{r}, v_{i} \geq \varepsilon \quad \forall r, i \end{aligned}$$

$$\end{aligned}$$

$$\begin{aligned} \end{aligned}$$

$$\end{aligned}$$

$$\end{aligned}$$

$$Max \qquad \theta_{IDMU} = \sum_{r=1}^{s} u_r y_r^{max}$$

$$S.T. \qquad \sum_{i=1}^{m} v_i x_i^{min} = 1$$

$$\sum_{r=1}^{s} u_r y_{rj} - \sum_{i=1}^{m} v_i x_{ij} \le 0 \qquad j = 1,..., n$$

$$u_r, v_i \ge \varepsilon \quad \forall r, i$$

$$(3)$$

$$Min \quad \varphi_{ADMU} = \sum_{r=1}^{s} u_r y_r^{\min}$$

$$S.T. \quad \sum_{i=1}^{m} v_i x_i^{\max} = 1$$

$$\sum_{r=1}^{s} u_r y_{rj} - \sum_{i=1}^{m} v_i x_{ij} \le 0 \quad j = 1, ..., n$$

$$u_r, v_i \ge \varepsilon \quad \forall r, i$$

$$(4)$$

$$RC_{j0} = \frac{\varphi_{j0}^* - \varphi_{ADMU}^*}{(\varphi_{j0}^* - \varphi_{ADMU}^*) + (\theta_{IDMU}^* - \theta_{j0}^*)}$$
(5)

No	Categor y	Index	No	Categor y	Index
*1	Finan.	Total income	25	Innov.	Total water used in industrial fields
		Total cost			Total water delivered for industries
2	Finan.	Gross benefit	26	Innov.	Total water used in industrial fields
		Total cost			Total water delivered for industries
3	Finan.	Budget percent fulfilled	27	Innov.	Total recovered water
		m · li		_	Total proved budget
4	Finan.	Total income	28	Innov.	Total recovered water
			Total assets ce consumption for con. 29		Total proved budget
*5	Finan.	T. finance consumption for con.		Innov.	T. recovery of under ground water
		T. approved finance for con.			T. recoverable under ground water
6	Finan.			Innov.	V. of enterance water to area
		Total assets	0		Total leaving water from area
7	Finan.	Actual ROI	31	Innov.	Mean time of projects actual time
		Forcasted ROI			Mean time of projects planed time
8	Finan.	Assigned budget	32	Innov.	Total volume of recovered rainfall
		Approved budget			Total rainfall volume
10	Finan.	Total regulated water of dams	33	Innov.	Mean stoping time of devel. projects
		Total assets of dams			
*1	In. B.P.	Vol. of delivered water from any usa	34	Innov.	Total water usage
1		Total cost of human resources			Total water need
*1	In. B.P.	V. of delivered water from networks	35	Innov.	Total used potential of the area
2		V. of interance water to networks			Total potential of the area
13	In. B.P.	Mean time of payment to contructo	36	Innov.	Total absorbed civil budget
-					Total approved civil budget
14	In. B.P.	Recovery perecent of used water	37	Innov.	Total water usage
14	III. D.I .	Recovery perecent of used water	57	milov.	Total water
15	In. B.P.	Nomber of networks customer	38	Innov.	Percentage of U. G. water pollution
10		Nomber of contructs	20		rereentage of o. d. water politition
16	In. B.P.	V. of under ground water for agri. us	30	Innov.	Percen. of pollution of surface water
10	III. D.I .	Total volume of water for agri. usa	39	mnov.	rercent of pollution of surface water
17	In. B.P.	productivity	40	Innov.	Percentage of irrigating lands
*1	Cust.	Lands under cultivation of networ		Innov.	Mean quality of water
8		Net area of lands covered by netwo			Mean standard quality
*1	Cust	Total hours used to answering cust.	40	Innov	Men cost of IT developement project
*1 9	Cust.	Total hours of personels working	42	Innov.	Total cost of IT systems
					-
20	Cust.	Total delivered water based on cont		Innov.	Perce. of regional irrigated fatming
		Total delivered water	3		
21	Cust.	Total delivered water for agricultur	44	Innov.	Total industrial production
		Total delivered water			Total delivered water to industries
22	Cust.	Total delivered water for industries	45	Innov.	T. recovered water of ind. waste wate

Table 1. Data classification and indexes illustration

45 A New Method to Organizational Ranking: Integrating BSC and DEA

Table 1. Contin	nued
-----------------	------

23	Cust.	Total delive	red water for a	gricultur 16	Innov.	Total tuneo	l water by dam	<u>c</u>							
23	Cust.		al cultivated lan	0	mnov.		sets of dams								
24	Creat				Term erer	Total investment on R & D									
24	Cust.	Mean edu	acation of custo	omers 47	Innov.	Total inves	stment on R & L)							
	Tab	le 2. Inputs and	outputs data for	10 sub-organiza	ation of Kermans	shah Water I	Regional Org.								
	DMU	X ₁	\mathbf{X}_2	X ₃	X_4	X_5	X ₆	X7	,						
1	DMU_1	46963	54	990	169934.1	75357	273600	16	<u> </u>						
2	DMU_2	37570.4	9	99	118953.87	52749.9	164160	16)						
3	DMU_3	16437.05	12.6	264	101960.46	45214.2	68400	14							
4	DMU_4	16437.05	32.4	330	33986.82	33910.65	54720	14							
5	DMU ₅	18785.2	7.92	231	254901.15	22607.1	76608	14							
6	DMU_6	28177.8	6.48	198	169934.1	33910.65	109440								
7	DMU ₇	37570.4	14.04	264	339868.2	15071.4	191520								
8	DMU ₈	11740.75	16.74	330	254901.15	36171.36 54720		14							
9		7044.45	13.68	429	169934.1	37678.5	41040	12							
10	DMU_{10}	14088.9	13.14	165	84967.05	16578.54	27360	14							
	Max	46963			339868.2	75357	273600	16							
	Min			99	33986.82	15071.4	27360	12							
	DMU	\mathbf{Y}_1	Y_2	\mathbf{Y}_3	Y_4	Y ₅	Y_6	\mathbf{Y}_7	Y_8						
1	DMU_1	3	0.148148148	0.007595767	9.185965736	0.34	0.508632244	0.86	16						
2	DMU ₂	0.75	0.3333333333	0.005086451	6.450145506	0.2	0.537696944	0.56	16						
3	DMU ₃	0.4	0.047619048	0.00356536	9.505477587	0.23	0.406905795	0.57	14						
4	DMU ₄	0.3333333333	0.032716049	0.00604561	2.376369397	0.19	0.565146938	0.39	14						
5	DMU ₅	0.514705882	0.116161616	0.0042048	7.311905836	0.26	0.339088163	0.56	14						
6	DMU ₆	0.384615385	0.114197531	0.002351071	4.558749455	0.39	0.429511673	0.67	16						
7	DMU ₇	0.133333333	0.196581197	0.006103741	10.04864774	0.23	1.449601895	0.56	16						
8	DMU ₈	0.609756098	0.05734767	0.006076614	9.820710263	0.19	0.635790305	0.48	14						
9	DMU ₉	0.928571429	0.097953216	0.00795747	3.830045914	0.18	0.345869926	0.56	12						
10	DMU	0.304878049	0.04718417	0.004702141	4.616946257	0.25	0.439273302	0.45	14						
	10														
	Max	3	0.333333333	0.00795747	10.04864774	0.39	1.449601895	0.86	16						
	Min	0.133333333	0.032716049	0.002351071	2.376369397	0.18	0.339088163	0.39	12						
				Table 3. DEA R	lesults										
		DMU φ*(ADMU) Θ*(IDMU) RC rank													
		1 DM	1U ₁ 1	1	0.0792	4									
		2 DM	IU ₂ 1.547	8 1	0.1237	1									
		3 DM	IU ₃ 1	0.650	3 0.0767	7									
		4 DM	IU ₄ 1	0.596	8 0.0763	8									
		5 DM	IU ₅ 1	0.757	6 0.0775	6									
		6 DM	IU ₆ 1	0.595	8 0.0763	9									
		7 DM	IU ₇ 1	0.456	5 0.0754	10									
		8 DM	IU ₈ 1	0.893	2 0.0784	5									
		9 DM	IU ₉ 1.195	1 1	0.0956	3									
		10 DM	U ₁₀ 1.302	1	0.1043	2									
		11 IDN	MU -	10.935	58 -	-									
		12 ADI	MU 0.144	.9 -	-	-									
				$\epsilon = 0$											

References

- [1] Johnson, H.T. and Kaplan, R.S. (1987), Relevance Lost, *Harvard Business Press*.
- [2] Kaplan, R.S. and Norton, D.P. (1992), The balanced scorecard-measures that drive performance, *Harvard Business Review*.
- [3] Hong, J. and Suh, E. (2005), A strategic model for consolidating BSC measures based on the desirability function: A case study of a website company, *Harvard Business School Press*.
- [4] Cobbole, I. and Lawrie, G. (2002), The development of the balanced scorecard as a strategic management tool, *Proceeding of International Conference on Performance Measurement and Management*, pp.17-19.
- [5] Niven, P.R. (2003), Balanced Scorecard Step-By-Step for Government and Nonprofit Agencies, *John Wiley & Sons*, p. 87.
- [6] Golpîra, H. and Veysi, B. (2012), Flexible balanced Scorecard for nonprofit organizations, *Advances in Industrial Engineering, Information and Water Resources*, pp. 139-146.
- [7] Papalexandris, A. Ionnaou, G., Prastacos, G. and Soderquist, K.E. (2005), An integrated methodology for putting the Balanced Scorecard into action, *European Management Journal*, Vol. 23, No. 2, pp. 214–227.
- [8] Charnes, A., Cooper, W.W. and Rhodes, E. (1978), Measuring the efficiency of decision making units, *European Journal of Operation Research*, Vol. 2, pp. 529-444.
- [9] Wang, Y.M. and Luo, Y. (2006), DEA efficiency assessment using ideal and antiideal decision making units, *Applied Mathematics and Computation*, Vol. 173, pp. 902-915.
- [10] Myoung, B.L. and Sang, O.L. (1996), Economies of scale in the US computer industry: An empirical investigation using data envelopment analysis, *Journal of Evolutionary Economics*, Vol. 6, No. 2, p. 199.
- [11] Runsheng, Y. (1998), DEA: A new methodology for evaluating the performance of forest products producers, *Forest Products Journal*, Vol. 48, No. 1, p. 29.
- [12] Sevcovic, D., Halicka, M. and Brunovsky, P. (2001), DEA analysis for a large structured bank branch network, *Central European Journal of Operations Research*, Vol. 9, No. 4, p. 329.
- [13] Emrouznejad, A. and Banker, R. (2010), Efficiency and productivity: theory and applications, *Annals of Operations Research*, Vol. 173, No. 1, p. 1.
- [14] Henderson, D.J. and Zelenyuk, V. (2009), The application of data envelopment analysis approach to the efficiency measurement of Latvian banks, *Computer Science*, Vol. 39, p. 91.
- [15] Yang, Z. (2009), Assessing Canadian Bank Branch Operating Efficiency Using Data Envelopment Analysis, AIP Conference Proceedings 10/10/2009, Vol. 1177, No. 1, p. 31.
- [16] Malhotra, R., Malhotra, D.K. and Lafond, C.A. (2010), Benchmarking large U.S. retailers using a data envelopment analysis model, *Proceedings for the Northeast Region Decision Sciences Institute*, p. 468.
- [17] Sepehrdoust, H. (2011), Efficiency Measurement of Housing Sector; Using DEA Model, International Proceedings of Economics Development & Research, Vol. 4, p. 325.

46

- [18] Wen-Chih, C. and Chen-Fu, C. (2011), Measuring relative performance of wafer fabrication operations: a case study, *Journal of Intelligent Manufacturing*, Vol. 22, No. 3, p. 447.
- [19] Lee, Y.H., Cheah, E.T. and Koay, L.Y. (2011), Efficiency in the Malaysian Banking Industry, *ASEAN Economic Bulletin*, Vol. 28, No. 1, p. 16.
- [20] Rahimi, B., Yusefzadeh, H., Khalesi, N., Valinejadi, A., Gozali, A., Akbari, S. and Haghighatfard, P. (2012), Analysis of the Efficiency and Optimal Consumption of Resources in Selected Hospitals in Urmia Province through Data Envelopment Analysis, *Journal of Health Administration*, Vol. 15, No. 47, p. 91.
- [21] Entani, T., Maeda, Y, and Tanaka, H. (2002), Dual models of interval DEA and its extension to interval data, *European Journal of Operational Research*, Vol.136, pp. 32-45.
- [22] Wang, Y.M., Greatbanks, R. and Yang, J.B. (2007), Measuring the efficiency of decision making units using interval efficiencies, *European Journal of Operation Research*.
- [23] Golpîra, H. and Najafi, E. (2011), A hybrid method based on BSC and DEA for Organizational ranking and benchmarking, *The 4th National Conference on Data Envelopment Analysis*.

⁴⁷ A New Method to Organizational Ranking: Integrating BSC and DEA