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A B S T R A C T  A R T I C L E   I N F O 

In this paper, we consider the fuzzy open shop scheduling problem 
with parallel machines in each working stage where processing times 
are vague and are represented by fuzzy numbers. An open shop 
scheduling problem with parallel machines in each working stage 
under this condition is close to the real production scheduling 
conditions. A mixed-integer fuzzy programming (MIFP) model is 
presented to formulate this problem with the objective of minimizing 
makespan. To solve small-sized instances, an interactive fuzzy 
satisfying solution procedure is applied. Since this problem is known 
as a class of NP-hard, a novel discrete electromagnetism-like (DEM) 
is proposed to solve medium to large size examples. The DEM 
algorithm employs a completely difference approach. It makes use the 
crossover operators to calculate force and move particle is used. We 
employ Taguchi method to evaluate the effects of different operators 
and parameters on the performance of DEM algorithm. Finally to 
assess the performance of the algorithm, the results are compared with 
an existing EM algorithm from the literature and benchmark 
problems. The result exhibited the ability of the proposed DEM 
algorithm to converge to the efficient solutions.  
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1. Introduction 

Scheduling includes the allocation and sequencing of activities that need to be performed in a 
set of limited available resources [1]. Generally, these problems can be defined by a set of n 
jobs that need to be processed by a set of m working stages. Several production workshops 
are defined by their different attributes that belong to the processing rout of their jobs. One of 
them is open shop scheduling problem (OSSP) in which each job has to be processed on each 
one of the m stages. However, some of these processing times may be zero. There are no 
restrictions on the routings of each job. So in this case, the scheduler is allowed to determine 
a route for each job and different jobs may have different routes [2]. OSSP can be appeared in 
a service environment such as a network of diagnostic testing facilities in hospital where 
patients can do their tests at various test centers in an arbitrary order [3]. Other applications 
that can do pointed out to them are as follows: automobile repair, satellite communications, 
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teacher–class assignments, semiconductor manufacturing, quality control centers, and flight 
timetabling for airlines [4, 5]. However real production floors rarely use a single machine for 
each operation and sometimes processing times due to measurement errors and human impact 
on production processes are vague, but usually the open shop scheduling problems in which it 
is commonly assumed that each stage has one machine and processing time is deterministic. 
Indeed the purpose of replicating machines in parallel is to leveling the speed of the stages, to 
increase the revenue and capacity of the shop floor, or to reduce the impact of bottleneck 
stages on the overall shop efficiency. 
 In open shop scheduling problems, the processing order of operations is arbitrary. Thus, the 
solution space of an open shop problem is larger than that of job shop and flow shop 
problems. If the number of machines is more than two, then OSSP is NP-hard [6]. In open 
shop scheduling problem with parallel identical machines, three decisions must be taken 
following: (1) Processing route determination (2) Job sequence determination (3)Job 
assignment to machines inside each stage. Therefore, this problem is at least as hard the hard 
OSSP and is a class of NP-hard problems. To solve such a problem in medium and large size, 
use of exact methods is often unpractical and requires the use of efficient metaheuristic 

methods. 
Naderi er al. [7] formulated an open shop scheduling problem to minimizing total tardiness. 
They presented four mixed integer linear problems for OSSPs and then investigated the 
complexity of these models. They designed Genetic Algorithm (GA) and Variable 
Neighborhood Search (VNS) and investigated the effect of various operators on the GA using 
Taguchi method. Liaw[8] considered the problem of scheduling preemptive open shop to 
minimize total tardiness. He developed an efficient constructive heuristic for solving large-
sized problems. He also presented a branch-and-bound algorithm for solving medium-sized 
problems. Mosheiov& Oron[9] addressed batch scheduling problems on an m-machine open 
shop to minimizing makespan and flow time. They assumed identical processing time jobs, 
machine and sequence-independent setup times and batch availability. Su et al. [10] studied 
two models of two-stage processing with flow shop at the first stage followed by open shop at 
the second stage to minimize the makespan. They proposed an integer programming model 
and a branch and bound algorithm for model 1 and a lower bound developed for model 2 as a 
benchmarks for the heuristic algorithms. Naderi et al. [11] investigated an open shop that 
each stage consists of a set of parallel machines to minimize total completion times. They 
suggested a mixed integer linear programming model for this problem. Also, they presented a 
memetic algorithm (MA) for solving the problem. 
 Panahi&Tavakoli-Moghadam [12] offered an efficient method based on Multi-Objective 
Simulated Annealing (MOSA) and ant colony optimization (ACO) for an open shop 
scheduling problem with minimizing makespan and total tardiness. They also applied a 
decoding operator to improve the quality of produced schedules. Sha et al. [13] proposed a 
Multi-objective particle swarm optimization (MOPSO) algorithm for OSSPs with multi-
objective. Due to the discrete of scheduling problems and PSO application in continuous 
optimization problems modified the particle position representation, particle velocity, and 
particle movement.  
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 Electromagnetism-like (EM) is one of new methods in the field of optimization based on the 
swarm intelligence. This optimization method works inspired by the existing rules of 
electrostatic systems and inherently used for continuous minimization problems [14]. This 
algorithm makes use of a small number of parameters and appropriate values of the 
parameters can be easily determined by performing several simulation. The EM has been 
used for solving various problems such as routing problems [15, 16], Fuzzy solving equations 
[14], Neural Network analysis [17], Multifunctional control [18] and scheduling problems 
[19-21]. Naderi et al. [22] presented EM for OSSP with sequence-dependent setup times. 
They incorporated a fast search engine and a simple simulated annealing to improve 
algorithm performance. 
Following a brief review of the literature is provided in the Table1. The table contains type of 
the objective function and solution methods. 
  

Table 1. Category articles in the term of the objective function and solution methods. 

Reference 
Objective function Solution 

Methods(metaheuristic) Single objective Multi objective 

Noori-Darvish et.al [23] 

 total weighted 
tardiness , total 

weighted completion 
times 

MOPSO 

Hashemi Doulabi et.al[24] the sum of weighted 
earliness/tardiness 
penalties 

 HSA 

Yu et al. [25] makespan  SA 
Naderi et al. [7] makespan  GA, VNS 
Roshanaei et al. [26] makespan  SA 

Sha et.al [13] 
 makespan, total flow 

time and Machine idle 
time 

MOPSO 

Naderi et al. [22] Total completion times  EM 
Gonzalez et.al [27] Expected makespan  GA 
Matta [3] makespan  GA 
Low& Yeh [28]  Total tardiness  GA 

Seraj& Tavakkoli-
Moghadam[29] 

 total weighted 
tardiness , total 
weighted completion 
times 

TS 

Zhang& Wu [30] total weighted 
tardiness 

 SA & GA 

Sha& Hsub[31] makespan  PSO 
Huang& Lin [32] total weighted tardy 

jobs 
 TS 

Senthilkumar&Shahabudeen[33] makespan  GA 
Blum& Sampels [34] makespan  ACO 
Liaw [35] total tardiness  TS 
Blum [36] makespan  Beam-ACO 
Liaw [37] makespan  TS 

 
The inherent uncertainty in the parameters of models is increasingly being taken into account 
in various fields. Moreover, there are several factors involved in real-world scheduling 
problems that are often vague or uncertain in nature. This is especially true when the factors 
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that made human, considered into the problems. Thus, parameters are often faced with 
uncertainties.  
 Accordingly, production scheduling problems can be divided into two general categories: 
deterministic scheduling and uncertain scheduling problems [38, 39]. There are basically two 
approaches to deal with uncertainties [40], such as the stochastic-probabilistic theory and 
possibility theory or fuzzy set theory [41, 42]. 
 In this practice, fuzzy set theory is applied for dealing with the uncertainties in scheduling 
problems. It provides an appropriate alternative framework for the mathematical modeling for 
real-world systems and offers several advantages associated with the use of heuristic 
approaches: 

• Probability theory needs considerable knowledge about the statistical distribution of 
the unknown parameters. Vs, fuzzy theory provide an effective way to model 
uncertainty even when no historical information is available [43]. 

• Using stochastic-probabilistic theory includes comprehensive computation and 
requires thorough knowledge on the statistical distribution of the uncertain time 
parameters [44]. 

• The use of fuzzy set theory reduces the computational complexity of the scheduling 
problem compared with the stochastic probabilistic theory [45]. 

• One of the capabilities of fuzzy theory, the use of fuzzy rules in heuristic algorithms 
[39].  

Konno& Ishii [46] presented a model for a preemptive open shop scheduling problem with 
fuzzy resource and allowable time. Their problem had bi-criteria to be maximized, i.e., 
minimum degree of satisfaction with respect to the intervals of processing jobs and, minimum 
satisfaction degree of resource amounts applied in the processing intervals. Palacios et al. 
[27] investigated the OSSPs where processing times were fuzzy. They suggested a GA 
algorithm to minimize average maximum completion time of jobs. Noori-Darvish et al. [23] 
addressed a OSSPs with Sequence-dependent setup times, fuzzy processing times and fuzzy 
due dates. They presented a new bi-objective possibilistic mixed-integer linear programming 
model to minimize total weighted tardiness and total weighted completion times. For solving 
small-sized instances, an interactive fuzzy multi-objective decision making (FMODM) 
approach, called TH method proposed by Torabi and Hassini[47], is applied. 
 In this study, we present a mixed-integer fuzzy programming (MIFP) model for OSSP with a 
set of parallel machines at each stage. Furthermore, we devise a novel discrete 
electromagnetism-like algorithm to solve the considered problem and use the benchmark of 
the Taillard[48] as lower bound to evaluate the performance of the algorithm. The rest of the 
paper is as follows. A MIFP formulation of the problem under study is set out in Section 2. In 
Section 3, we suggest an interactive fuzzy satisfying solution procedure to the proposed 
model. Computational results indicate that the MIFP model can be solved in reasonable CPU 
time to run, for only limited number of jobs. For problems with larger number of jobs, we 
describe a Discrete Electromagnetism-Like algorithm (DEM) in Section 4. We describe the 
experimental design to evaluate the posed method in section 5. Finally, concluding remarks 
are given in Section 6. 
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2. A MIFLP formulation of the problem 

In formulating scheduling models, parameters such as job processing, ready and setup times 
are generally considered as deterministic values. However, in real-world situations, these 
parameters are often uncertain values. Time required to process parts on machines cannot be 
determined exactly due to measurement errors and the involvement of human activities in the 
manufacturing process. Due to the inconsistency in the performance of operators and 
machines at the shop floor, repeated measurement of the system’s parameters provides a 
certain range of values. Therefore, the information that we have about the model parameters 
is often vague and imprecise [49, 38]. In a situation where we lack enough information to 
define the parameters, qualitative expression described by linguistic variables like ‘too short’ 
or ‘about 100’ are often used based on ambiguous data. In fact, fuzzy set theory provides the 
tools to deal with uncertain model parameters, which are not as deterministic values but 
rather as interval values representing estimates [50]. 
  In this section, we formulated a mixed-integer fuzzy linear programming (MIFLP) model 
for open shop scheduling problem with a set of parallel machines at each stage that presented 
by Yimer & Demirli [51] . The parameter that is related to uncertain time (processing) is 
offered by triangular fuzzy sets ),,(~

,,,,
o

ij

m

ij

o

ijij pppp = . Here, the objective will be minimizing the 

makespan Cmax, that is, the time lag from the start of the first operation until the end of the 
last one. A problem often denoted   FuzzPOm||Cmax  in the literature.  

2.1. Nomenclature 

 We need to introduce the notations including parameters, indices and variables used in the 
model. The parameters and indices are defined in Tables 2, 3 and 4.  
 

Table 2. Indices used in the models 
Index For Scale 

kj ,  Jobs { }n,....2,1  

li ,  Stages { }m,....2,1  

r  Machines  { }im,....2,1  

Table 3. Deterministic Parameters used in the models 
Deterministic Parameters Description 
n  The number of jobs 
m  The number of stages 

im  The number of identical machines in stage i 

ijo ,  The operation of job j in stage i 

M  A large positive number 
Table 4. Fuzzy parameters used in the models 

Fuzzy parameters Description 

ijp ,
~

 The processing time of ijo ,  

ijc ,
~

 The completion time of ijo ,  

)(~ xz
r

 imprecise makespan 
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Marketing above the symbol indicates that these variables represent vague values or fuzzy 
numbers. 

Binary integer 

Xj, i, l  1 if Oji is processed after Ojl 

         or 0 otherwise.                            i ∈ {1, 2 . . . . m − 1}, l > i. 

Yj,i,k  1 if Oji is processed after Oki 

         or 0 otherwise.                            j ∈ {1, 2, . . . , n − 1}, k > j. 

Zj,i,r   1 if Oji is processed on rth machine in stage i 

          or 0 otherwise.                           r ∈ {1, 2, .…mi}. 

 

General variables 

)(xf
rχ  fuzzy solution space 

)(xc
rχ  crisp solution space 

x
r

       a feasible solution vector of decision variables )()( xxx cf
rrr χχ ∪∈   

λ        fuzzy goal satisfying level )10( << λ                                     

2.2.The proposed model 

 Fuzzy goal function: The objective is to minimize the completion time of the last delivery 
among the n jobs, commonly referred to as the makespan. It is related to the throughput of 
the schedule. Because throughput is defined as the amount of work completed per unit time, 
and because the amount of work in the n-job model is fixed, we maximize throughput by 
minimizing the makespan[52]. 
 The fuzzy objective function (1) gives the imprecise makespan of all jobs: 

max
~

)(
~

CxZ =
r

 (1) 

Crisp solution space: The constraint related to the each job is processed by only one 
machine at each stage does not depend on the fuzzy time variables. So, it is considered to be 
crisp. 

ijZx
im

r
rijc ,1)(

1
,, ∀=≡∑

=

rχ  
 
(2) 

{ } rjiZ rij ,,1,0,, ∀∈  (11) 
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Fuzzy solution space: constrains related to the time imprecise parameter, belong to the space 
of fuzzy solution. The fuzzy constraints include: 

ijPCx ijijf ,
~~

)( ,, ∀≥≅rχ  (3) 

{ } limijxMPCC lijijljij <−∈∀−−+≥ ,1,...,2,1,)1(
~~~

,,,,,  (4) 

{ } limijxMPCC lijijijlj <−∈∀×−+≥ ,1,...,2,1,)(
~

,,,,,  (5) 

{ } kjnjri

ZZMYMPCC rikrijkijijikij

<−∈∀
−−×−−×−+≥

,1,...,2,1,,

)2()1(
~

,,,,,,,,,  
(6) 

{ } kjnjri

ZZMYMPCC rikrijkijijijik

<−∈∀
−−×−×−+≥

,1,...,2,1,,

)2()(
~~~

,,,,,,,,,  
(7) 

{ } { } limijX lij <−∈∀∈ ,1,....2,1,1,0,,  (9) 

{ } { } kjnjiY kij <−∈∀∈ ,1,....2,1,1,0,,  (10) 

 

Constraint set (3) assures that the completion time of each operation must be greater than its 
processing time. Constraint sets (4) and (5) specify the relation between each pair of 
operations of a job. For example, the completion time of Oj,i  must be greater than that of Oj,l if 
job j visits stage i after stage l. Similarly, constraint sets (6) and (7) define the relation 
between the completion times of each pair of jobs in each stage. For example, the completion 
time of Oj,i  must be greater than that of Ok,i if job k proceeds job j in stage i if they are 
processed by the same machine. Constraint sets (9)–(10) define the decision variables. 

2.3.Fuzzy goal programming 

 The imprecise and vague time-dependent parameters are expressed by fuzzy sets. The 
degrees of membership functions for the fuzzy numbers parameters are defined based on 
psychic judgments. Symmetric triangular fuzzy number is the simplest form function of fuzzy 
numbers, which is made of two basic estimations, the most possible value, and the maximum 
deviation from it [53]. For example, a symmetric triangular membership function for a fuzzy 
processing time ijp ,

~ can be defined by: 

),,(),,(
~

,,,,,,,,,
r
ij

m
ij

l
ij

m
ij

m
ij

m
ijij

m
ijij PPPPPPPPP ==±≅ +− δδδ  

 Values of the left and right of the center have the lowest likely to belong to the set of 
possible values, so, their membership degree is zero. The most likelihood value, which is in 

the middle of the bound, has the highest degree of membership[ ]1)( ,~ =
m
ija Pµ .Other values in 

the span of ijP ,
~

, will assume to be a linearly varying membership function in the interval     

[0, 1]. Figure1 shows a symmetric triangular membership function for ijP ,
~

. Also, the fuzzy 

objective function can be defined in terms of two deterministic objective functions for 
makespan: 
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)()(~)(
~

xZxZxZ m rrr δ±−  

where 

mm CxZ max)( =
r

 δδ
max)( CxZ =

r

 (13) 

 

 Similarly, the fuzzy solution space )(xf

rχ given by Eq. (3)-(7) can be defined as a combination 

of two sets of crisp constraints which are as follows: 

)()()( xxx mf
rrr

δχχχ ±≅  (14) 

 

where 

ijPCx ij
m

ij
m

m ,)( ,, ∀≥≅rχ   

{ } limijxMPCC lijij
m

lj
m

ij
m <−∈∀−−+≥ ,1,...,2,1,)1( ,,,,,   

{ } limijxMPCC lijij
m

ij
m

lj
m <−∈∀×−+≥ ,1,...,2,1,)( ,,,,,   

{ } kjnjri

ZZMYMPCC rikrijkijij
m

ik
m

ij
m

<−∈∀
−−×−−×−+≥

,1,...,2,1,,

)2()1( ,,,,,,,,,
 

 

{ } kjnjri

ZZMYMPCC rikrijkijij
m

ij
m

ik
m

<−∈∀
−−×−×−+≥

,1,...,2,1,,

)2()( ,,,,,,,,,
 

 

{ } { } limijX lij <−∈∀∈ ,1,....2,1,1,0,,   

{ } { } kjnjiY kij <−∈∀∈ ,1,....2,1,1,0,,   

 

and 

ijPCx ijij ,)( ,, ∀≥≅ δδ
δχ

r

 (15) 

{ } limijxMPCC lijijljij <−∈∀−−+≥ ,1,...,2,1,)1( ,,,,,
δδδ   

{ } limijxMPCC lijijijlj <−∈∀×−+≥ ,1,...,2,1,)( ,,,,,
δδδ   

{ } kjnjri

ZZMYMPCC rikrijkijijijik

<−∈∀
−−×−×−+≥

,1,...,2,1,,

)2()( ,,,,,,,,,
δδδ

 
 

{ } kjnjri

ZZMYMPCC rikrijkijijikij

<−∈∀
−−×−−×−+≥

,1,...,2,1,,

)2()1( ,,,,,,,,,
δδδ

 
 

{ } { } limijX lij <−∈∀∈ ,1,....2,1,1,0,,  
 

{ } { } kjnjiY kij <−∈∀∈ ,1,....2,1,1,0,,   
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A fuzzy decision is obtained by considering the intersection of the fuzzy objective and the 
whole space solution. When information related to the objective function and constrains sets 
is vague, the problem can be formulated as a goal fuzzy programming problem which is 
described below: 

Find:         x
r

 (16) 

To satisfy: )()()()(
~

xxxandxZxZ fc
m rrrrr χχ ∪∈≅   

 

where 

x
r

 is a solution vector of decision variables in feasible solution space )()( xx fc
rr χχ ∪ , and 

)(xZ m r

 related to the goal fuzzy objective. The symbol “≅”  in the constrain indicates that the 

resulting makespan ))(
~

( xZ
r

 should be around expected value )(xZ m r

 with some symmetric 

deviation )(xZ
rδ on both sides. 

3. Solution approach 

For the problem is presented in previous section, the objective function will be a triangle 
symmetric possibility distribution. This function can be defined by three vertices 

))(),(),(()(
~

xZxZxZxZ rml rrrr

= . 

 In fact minimization )(
~

xZ
r

is obtained by moving the three vertices towards origin; under this 

condition, the problem becomes a certain multi-objective linear programming by converting 

)(
~

xZ
r

 into three interdependent crisp objectives [53]. 

Indeed, three objective functions: Minimizing the most possible value )(1 xZ
r , maximize the 

possibility to obtain lower objective function )(2 xZ
r  and to minimize the risk of getting high 

objective function )(3 xZ
r

: 

)()(1 xZxZMin m rr

=  (17) 

)()()(2 xZxZxZMax lm rrr δ
==

−   

)()()(3 xZxZxZMin mr rrr δ
==

−   

)()(: xxxSubject c
rrr

δχχ ∪∈   
 

)(xZ
rδ , Represents the symmetric deviation from the fuzzy number.  

By using fuzzy decision making of Bellman and Zadeh[54] and fuzzy programming method 
of Zimmermann[55], MOLP problem can be transformed into single goal linear programming 
problem. The initial values are obtained for the positive and negative ideal solutions by 
solving each of the above functions separately: 
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)()(1 xZMinxZ mPIS rr

=  (18) 

)()(1 xZMaxxZ mNIS rr

=   

)()( 32 xZMaxZxZ NISPIS rr δ
==   

)()( 32 xZMinZxZ PISNIS rr δ
==   

 
By using membership functions outlined below, the objective functions are converted into 
fuzzy goals. 

PISNIS

NIS

ZZ

ZZ
Z

11

11
11 )(

−

−
=µ  

(19) 

NISPIS

NIS

ZZ

ZZ
Z

22

22
22 )(

−

−
=µ  

 

PISNIS

NIS

ZZ

ZZ
Z

33

33
33 )(

−

−
=µ  

 

 Applying membership functions expressed and the fuzzy decision of Bellman and 
Zadeh[54],the MOLP problem can be represented: 

{ })(),(),(min:min 332211 ZZZeMaxi µµµ  (20) 

)()(: xxxtoSubject fc
rrr χχ ∪∈   

 Finally, by introducing an auxiliary fuzzy goals satisfying level )10( ≤≤ λλ , the MOLP 

problem can be reduced to single objective formal LP problem of Zimmermann [55]: 

λ:mineMaxi  (21) 

)()(

3,2,1)(:

xxx

iforZtoSubject

fc

ii
rrr χχ

µλ
∪∈

=≤
 

 

In Eq. (21) high value of λ indicates that the objective functions are optimized with a high 

degree of confidence. 

4. Proposed discrete Electromagnetism-like algorithm 

As mentioned in section1, the problem considered in our study belongs to class of NP-hard 
problems. So, for solving medium to large size problems, we suggest an efficient DEM 
algorithm. 

4.1.Classic EM 

 Electromagnetism-like (EM) is one of new methods in the field of optimization based on the 
swarm intelligence. It was introduced by Birbil and Fang [14]. The main idea of EM is based 
on the attraction-repulsion mechanism of electromagnetism theory (Coulomb’s law). In this 
algorithm each solution is considered as a charged particle and the charge of particle is 
belonged to its objective function value. The scale of absorption or desorption on candidate 
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solutions in the population is determined by this charge. The route of this charge for particle i 
is determined by adding the exerted pressure of the other particles on particle i. In this 
mechanism, a particle with superior objective function value attracts the others ones, while a 
particle with inferior objective function value excretes the others ones. The charge for each 
particle is calculated by the following formula: 

( )














−
−−=

∑
=

popsize

k

bestk

besti
i

yfyf

yfyf
nq

1

)()(

)()(
exp  

(22) 

 In Eq. (22), )( iyf and )( bestyf  denote the objective function value of particle i and the best 

solution. The force of particle i is calculated as follows: 

i

yfyf
yy

qq
yy

yfyf
yy

qq
yy

F
popzize

ij ij
ji

ji
ji

ij
ji

ji
ij

i ∀










≤−−

>−−
= ∑

≠

,

)()(
||||

)(

)()(
||||

)(

2

2

 (23) 

 The general scheme of EM is shown in Fig. 1. It includes four phases: initialize, computing 
of total force exerted over each particle, moving particles in the direction of the force and, 
local search. 

 

 

 

 

 

 

 

Figure 1. The fundamental procedures of EM 

4.2.Proposed DEM  

Although the results of applying the EM was very satisfactory for continuous space problems 
but these results was not enough for discrete space problems [14].the main reason that EM 
cannot be used for discrete problems is that its operators (force calculation and movement) 
are not compatible with this type of spaces. 
 Since the scheduling problems are in the category of discrete problems, in this research, we 
have developed the classical EM to DEM that is described in: 

Procedure Electromagnetism algorithm 

Initialize () 

While (hasn’t met stop criterion) do 

    Local Search () 

   Calculate total force F () 

   Move particle by F () 

   Evaluate particles () 

End while 
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4.2.1. Encoding and decoding outlines, initialization 

 Coding scheme is a procedure which makes an algorithm is able to identify a solution. One 
of these schemes is permutation list. In this method a string that contains n×m array is 
designed. In fact, we produce a random permutation of the elements of the set 

{ }mnA ×= ...2,1  (n=jobs number, m= stages number). Suppose, n=2 and m=3, the string is 

generated by the following: 

23o  22o  21o  13o  12o  11o  
      

3 2 6 1 4 5 

Figure 2. Illustrates a permutation list. 
Fig.2. indicates that an operation is placed in sequence according to its corresponding number 
in the second string. According to the Fig. 2, at first job3 is processed over stage1, and then 
job2 is processed over stage2, etc. 
 Non delay schedule is applied to decode the permutation list. 
 Non delay schedule: this schedule is investigated under the terms makespan, the search 
space is reduced by this decoding so that the optimal solution does not disappear from it. We 
apply procedure proposed in [56] and later used in [31]: all operations are placed in a set (U) 
including unscheduled operations. We calculate y which equals the minimum of the earliest 
possible starting times (sij) of operations in U. All the operations whose starting time is equal 
to y are assigned to a set called R. Among the operations in R, the operation O* with the 
earliest relative position in permutation θ is scheduled and extracted from U. In this decoding, 
we assign the jobs to the first available machine at every stage. Fig. 3 illustrates the decoding 
scheme. 

 

 

 

 

 

 

 

Figure 3. The procedure of decoding scheme by the principal of non-delay schedule 

4.2.2. Calculating total force and particles movement  

 This study applies the modified EM that proposed by Debels et.al. [57], to obtain the total 
force exerted on the particle. In this procedure dose not determined the force exerted on 

Procedure non-delay schedule 

   U=all operation in given permutation θ 

  While φ≠U  

  { }UOOofsy ijijij ∈= |min  

   { }UOysOR ijijij ∈== ,|     %R is a set of operations whose starting times are equal to 

y 

   Choose O* from the set of R with the earliest relative position in permutation θ  

   Extract O* from U 
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particle i from particle j by using the fixed charge of qi and qj. In place of, qij is related to the 
relative difference of f(xi) and  f(xj).  
In the proposed algorithm, the roulette-wheel is used to select particle i and particle j. After 
selecting two particles the particle charge is computed as follows: 

)()(

)()(
bestworst

ji
ij

xfxf

xfxf
q

−

−
=  (24) 

 If the objective value )( ixf  is larger than )( jxf , particle j will attract particle i. from the 

other point of view, when )()( ji xfxf <  , particle i will attract particle j and there is no 

action when )()( ji xfxf = . More, the force exerted on particle i by particle j is calculated as 

follows: 

jij xF (=     )ix   ijq  (25) 

 Now, the particle move from solutionix to iji Fx ⊕ in the direction of jx .The definitions of the 

operator    and operator ⊕  are as follow. 
 The subtract operator   . This is applied as Position-based Crossover and Linear Order 
Crossover that following in: 
 Before ruining operator    , operator    is used to determine the number of dimensions and 
uses the following expression: 

|| nqL ij ×=  

In the above equation n indicates the number of dimension. 

 Position-based Crossover: If 0>ijq , value L  is rounded to up, then to the size of L, is 

randomly selected dimension from particle i and moved to new particle and the rest of 

numbers chosen from particle j. if 0<ijq above procedure is reversed (place two particles are 

reversed).Fig.4 is shown the implementation steps of the operator. Suppose the permutation 
of the particle i and j is the following and 23.0=ijq , so the number dimensions of each particle 

are 6. Then L=6×0.23=1.38. Because 0>ijq we randomly select 2 dimensions of particle j, 

that dimensions 1 and 5 are selected and transferred to new particle. We remove the numbers 
of particle j that are selected from particle i and place the rest into the new particle according 
to their same order in particle i. 
 Liner order crossover (LOX): at first introduced by Falkenauer & Bouffouix [58], works as 
follows: 
 A subsequence of operations from a parent is randomly selected, and then is created the 
initial part of the offspring by copying the subsequence into the corresponding position of it. 
The operations that are currently in the subsequence from the second parent are deleted and 
finally the operations are placed into the unfixed positions of the offspring from left to right 
according to the order of the sequence. This procedure is shown in Fig. 5. 

 In fact, the difference of two crossover operators is that in position-based crossover L 
dimension is randomly selected but in Linear Order crossover part of the parent 
chromosomes are selected length L and are copied into the offspring.   
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3 6 4 2 5 1 Parant1 )( jx  

       

5 6 4 2 3 1 Offspring jx(     iji qx ⋅)  
       

5 4 6 1 2 3 Parant2 )( ix  

 

Figure 4. Illustration of the Position-based Crossover operator 

 

 

6 5 4 3 2 1 Parant1 )( jx  

       

1 5 4 3 2 6 Offspring jx(     iji qx ⋅)  
       

5 1 4 2 3 6 Parant2 )( ix  

   

Figure 5. Illustration of the LOX crossover operator 

The add operator⊕ . This operator can be considered as Extension of Precedence 
Preservative Crossover [59] and called EPPX. EPPX is shown as follows: a string of equal 
length as the particle is produced then all of its elements are filled with random number at   

[0, 1]. This string defines the order in which elements are successively drawn from ix  and ijF  

. The offspring is initially empty. Start with the first element of ix  and ijF  , when the kth 

element is selected, if Rqij < ( Rqij > ) corresponding number in )(, iji Fx is transferred to 

offspring, if selected element comes from )(, iji Fx and dth )( kd≥  element in )(, iij xF , then 

delete element fromix , ijF  and  shift the elements of )(, iij xF between point k and d right 

once. The step is repeated untilix , ijF   are empty and offspring is obtained. Fig.6 describes an 

illustration of EPPX. Suppose 46.0=ijq . 

 

Selected subsequence 
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3  6  4  2  5  1  
ijF  

0.82  0.43  0.56  0.5  0.1  0.2  string 

5  4  6  1  2  3  
ix  

          3  offspring 

6  4  2  5  1      

5  4  6  1  2      

        2  3    

6  4  5  1        

5  4  6  1        

              

              

4  6  5  1  2  3  offspring  

Figure 6. An illustration of EPPX 

4.2.3. Local procedure 

 This algorithm selects the best solution in the each iteration and perturbs the solution by 
moving the two points at random, and then finds its objective value. If the objective value of 
the new solution is better than the best solution, the new solution will replace it. Otherwise    
If the objective value of the new solution is worse than the best solution, and is better than the 
worst solution, it will replace the worst solution. So the worst solution is found and this new 
solution will replace it. Therefore, it attempts to improve average solution iteratively. 

5. Algorithm’s calibration  

 Parameter setting is an important part of the designing algorithms because we can adapt 
algorithm to the problem. So in this section, the behavior of DEM with different operator and 
parameters are appraised. Several DEMs can be obtained with different combinations of 
parameters and operators.  
 Between the alternative experimental examinations the Taguchi method is more efficient for 
calibrating the algorithm because it can survey generous decision variables with a small 
number of experiments [60]. In the Taguchi method, factors are categorized into two main 
groups: controllable and noise factors. Noise factors are those that we have no direct control 
over them. Since the removal of these factors is often impossible, the Taguchi method seeks 
to minimize the impact of these factors and to determine the optimal level of controllable 
factors [61]. Taguchi studies the impact of factors on the response variable variance and then 
based on the mean response variable determines the impact of the factors that are not 
effective on the variance. The main reason why Taguchi method is regarded as the design is 
that it tries to adjust the stability of the algorithm so that uses the ratio S/N which in fact 
determines ratio Signal to Noise. Taguchi classifies all objective functions into three groups: 
the smaller-the-better type, the larger-the-better type, and nominal-is-best type. Considering 
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that almost all functions in scheduling are the smaller-the-better type, their corresponding 
S/N ratio [62] is. 

2
10 )(log10 functionobjectiveratioN

S −=  (26) 

Table 5 shows the factors that need to be tuned with their levels. 
From standard table of orthogonal arrays, the L18 is chosen as an orthogonal array for the 
algorithm. We generate a set of 25 instances as follows: we have 5 combinations (4×4, 5×5, 
7×7, 10×10, and 15×15). There exist five replicates with different mi (number of parallel 
machine in each stage), that is generated from a uniform distribution over (2, 4) for each 
combination thus summing up to 25 instances. The processing times are randomly generated 
from a uniform distribution over (1, 99). In order to conduct the experiments, we implement 
DEM in C# and run on a PC with 2.0 GHz Intel Core 2 Duo and 2 GB of RAM memory. We 
use relative percentage deviation (RPD) as a common performance measure to compare the 
methods. RPD is calculated as such: 

100
lg

⋅
−

=

sol

solsol

Min

MinA
RPD  

27 

where Algsol is Cmax obtained for a given algorithm and instance and Minsol is the lowest Cmax 
for a given instance obtained by any of the algorithms. 

Table 5. Factors and their Levels  
Factors Level Type 

Crossover Operator 2 
(1) Position-based Crossover 
(2) Linear Order Crossover 

Population Size 3 10  20  40 
Number of Local Search 3 15  25  50 

We run DEM for each trail of Taguchi experiment. Table 6 shows the results that are 
transformed into S/N ratio.  Fig.7 shows the mean ratio obtained for each level of the factors. 
The optimal level of factors becomes: Crossover: Position-based, Population-Size= 20, Local 
Search number = 50. 

Table 6. The results are transformed into S/N ratio 
Cross_Type Pop_Size Local_No Trail 1 Trail 2 Trail 3 Trail 4 Trail 5 S/N 

1 10 15 20.33 25.61 28.82 26.69 21.90 -27.91 
1 10 25 21.06 22.07 27.80 18.72 26.41 -27.41 
1 10 50 19.51 17.63 16.34 18.00 18.37 -25.11 
1 20 15 10.84 14.13 11.58 12.69 14.08 -22.10 
1 20 25 10.51 10.74 12.70 10.59 13.95 -21.42 
1 20 50 9.91 8.65 6.72 7.92 5.54 -17.95 
1 40 15 17.06 16.80 16.18 10.61 13.94 -23.59 
1 40 25 15.11 17.13 16.56 15.81 15.89 -24.14 
1 40 50 18.54 16.57 19.59 18.83 20.18 -25.47 
2 10 15 25.60 25.11 20.27 20.55 22.56 -27.21 
2 10 25 24.19 24.93 23.45 25.92 25.31 -27.88 
2 10 50 23.78 20.72 19.28 17.74 21.28 -26.30 
2 20 15 18.67 16.54 14.54 15.60 14.92 -24.15 
2 20 25 13.69 14.64 15.16 14.74 17.25 -23.60 
2 20 50 12.07 13.77 12.55 13.83 10.96 -22.07 
2 40 15 16.70 15.16 16.69 16.78 14.27 -24.06 
2 40 25 17.76 17.67 19.00 19.53 18.03 -25.30 
2 40 50 21.12 20.70 18.03 20.41 19.55 -26.02 
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Figure 7. The mean S/N ratio plot for each level of the factors 

6. Experimental result  

  In this section, we intend to appraise the FMILP model and the proposed DEM algorithm.  
At first small-sized problems are solved to evaluate the mathematical model and also DEM 
algorithm against the results obtained from the model. We implement FMILP model in 
CPLEX 10.1 and the algorithms in MATLAB 7.6 and run on a PC with 2.0 GHz Intel Core 2 
Duo and 2 GB of RAM memory. In this paper, the stopping criterion used when testing all 
instances with the algorithms is n × m × 0.4 s. 
 For the experimental study we use [63] and generate a set of fuzzy problem instances from 
well-known benchmark problems from Taillard [48]. In fact each crisp processing time t is 
converted into a symmetric fuzzy processing time p(t) so that a certain value is p2 =t and p1 , 
p3 are random values, symmetric w.r.t and generate so the TFN’s maximum range of 
fuzziness is 30% of p2.under these conditions, the optimal solution of the crisp problem 
provides a lower bound for expected fuzzy makespan [63]. 10 fuzzy instances were generated 
from each crisp problem instance. So in total there are 250 problem instances. 
 Computational results for Small to medium size and for large size Table 7, 8 and 9 are 
respectively collected. In these tables Lower Bound, MILP Model, DEM and ME 
respectively indicate to solve crisp instances by Taillard [48], solve fuzzy instances with 
CPLEX10.1, solve fuzzy instances using the proposed algorithm and solve fuzzy instances 
using the suggested algorithm by Chang et al. [64].The mathematical model is allowed a 
maximum of 1000 s of computational time. 
 Since the investigated problem is the fuzzy open shop scheduling problem with parallel 
machines at the stage so at first we suppose mi=1 to evaluate the model and algorithm. In this 
case, first the small size problems have been studied with Tillard’s benchmark which is a 
lower bound for our problem. As shown in the Table 8, by taking that we have added fuzzy 
assumption, the difference of the MILP model with lower bound is negligible. Also according 
to the obtained values by algorithm DEM can be realize its performance. 
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Table 7. Small Size Experiments (Fuzzy without Parallel, , mi=1) 
  MILP Model  DEM  MEM 

Problem 
Lower 
Bound 

Cmax 
CPU 
Time 

 Cmax 
CPU Limit 

Time 
 Cmax 

CPU Limit 
Time 

Tail_4×4_1 193 205.28 20.10  206.79 6.40  208.87 6.40 
Tail_4×4_2 236 251.10 19.58  251.129 6.40  254.65 6.40 
Tail_4×4_3 271 284.29 18.59  287.01 6.40  287.81 6.40 
Tail_4×4_4 250 266.92 22.29  264.246 6.40  269.85 6.40 
Tail_4×4_5 295 311.74 20.25  312.322 6.40  318.15 6.40 
Tail_4×4_6 189 200.79 12.48  198.511 6.40  198.91 6.40 
Tail_4×4_7 201 212.95 15.52  213.995 6.40  211.29 6.40 
Tail_4×4_8 217 228.96 12.80  229.576 6.40  230.60 6.40 
Tail_4×4_9 261 276.91 24.77  275.302 6.40  282.77 6.40 
Tail_4×4_10 217 229.46 20.33  232.099 6.40  235.61 6.40 
Tail_5×5_1 300 321.90 54.91  325.22 10.00  325.48 10.00 
Tail_5×5_2 262 281.12 47.09  284.135 10.00  284.12 10.00 
Tail_5×5_3 323 344.89 74.99  345.025 10.00  345.15 10.00 
Tail_5×5_4 310 328.72 45.08  326.903 10.00  333.96 10.00 
Tail_5×5_5 326 350.29 88.53  350.54 10.00  349.91 10.00 
Tail_5×5_6 312 334.65 88.55  339.991 10.00  341.41 10.00 
Tail_5×5_7 303 322.06 37.23  323.352 10.00  328.40 10.00 
Tail_5×5_8 300 318.956 81.23  323.346 10.00  321.983 10.00 
Tail_5×5_9 353 373.912 95.11  380.006 10.00  377.009 10.00 
Tail_5×5_10 326 347.477 81.83  350.934 10.00  352.562 10.00 
Tail_7×7_1 435 514.438 1000  466.589 19.6  470.552 19.6 
Tail_7×7_2 443 512.912 1000  482.432 19.6  487.322 19.6 
Tail_7×7_3 468 550.592 1000  510.785 19.6  510.356 19.6 
Tail_7×7_4 463 522.257 1000  509.027 19.6  499.813 19.6 
Tail_7×7_5 416 468.926 1000  459.151 19.6  465.336 19.6 
Tail_7×7_6 451 537.998 1000  483.587 19.6  504.25 19.6 
Tail_7×7_7 422 495.524 1000  456.472 19.6  462.28 19.6 
Tail_7×7_8 424 507.255 1000  469.284 19.6  469.137 19.6 
Tail_7×7_9 458 520.755 1000  502.55 19.6  502.515 19.6 
Tail_7×7_10 398 461.154 1000  424.128 19.6  438.36 19.6 

 
For large-size problem we have evaluated our algorithm and the Modified EM (MEM) of the 
Change et al. [64] with the lower bound of Tillard’s benchmark. We have used RPD as a 
common performance measure to compare the methods. The RPD of DEM is between 
3.19846 and 12.36. The mean RPD of DEM is 9.218% and the mean RPD of MEM is 
12.79%. According to the mean RPD and consider the fuzziness of the OSSP can be realized 
the effectiveness of DEM. Since that the mean RPD of the DEM algorithm is better than 
MEM algorithm then can be realized that DEM is more efficient than MEM. These results are 
shown in Table 8.  As previously described, we’ll investigate the fuzzy open shop scheduling 
problem with parallel machines so in the here investigate states that mi ≠1. In this case we 
have considered the performance of the DEM by lower bond that is obtained of solving 
model in deterministic mode. We performed each of the examples 5 times for different 
examples. As shown in the Table 9. RPD of the DEM is between 7.00928 and13.3854, and 
the mean RPD of DEM is 9.12073%., As regards some of this difference is due to the fuzzy 
nature of the problem, because the lower bound is obtained in crisp condition, can understand 
that the DEM algorithm has good performance. Also the mean RPD of MEM indicates that 
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DEM algorithm is better than MEM algorithm (the mean RPD of MEM is smaller than MEM 
algorithm).  These results are shown in Table 9.     

  Table 8. Large Size Experiments (Fuzzy without Parallel , mi=1) 

Problem Lower Bound 
DEM  MEM 

Cmax RPD%  Cmax RPD% 
Tail_10×10_1 637 701.191 10.077  683.105 7.238 
Tail_10×10_2 588 660.677 12.36  645.313 9.747 
Tail_10×10_3 598 662.027 10.7069  677.996 13.38 
Tail_10×10_4 577 635.445 10.1291  647.966 12.3 
Tail_10×10_5 640 660.47 3.19846  680.993 6.405 
Tail_10×10_6 538 599.37 11.407  631.998 17.47 
Tail_10×10_7 616 659.793 7.10933  699.251 13.51 
Tail_10×10_8 595 636.899 7.04183  635.84 6.864 
Tail_10×10_9 595 631.478 6.1307  642.759 8.027 
Tail_10×10_10 596 635.514 6.62982  656.426 10.14 
Tail_15×15_1 937 1054.57 12.5472  1067.52 13.93 
Tail_15×15_2 918 998.459 8.76455  1032.65 12.49 
Tail_15×15_3 871 936.259 7.49239  1000.52 14.87 
Tail_15×15_4 934 1019.01 9.10169  1070.66 14.63 
Tail_15×15_5 946 1023.21 8.16196  1102.73 16.57 
Tail_15×15_6 933 1010.85 8.34393  1047.81 12.31 
Tail_15×15_7 891 971.593 9.04521  1046.32 17.43 
Tail_15×15_8 893 967.635 8.3578  967.39 8.33 
Tail_15×15_9 899 1009.21 12.2594  958.456 6.614 
Tail_15×15_10 902 1010.7 12.0505  1040.85 15.39 
Tail_20×20_1 1155 1267.75 9.76153  1370.99 18.7 
Tail_20×20_2 1241 1386.03 11.6863  1424.07 14.75 
Tail_20×20_3 1257 1424.63 13.3355  1406.3 11.88 
Tail_20×20_4 1248 1319.4 5.72081  1423.62 14.07 
Tail_20×20_5 1256 1397.88 11.2966  1485.69 18.29 
Tail_20×20_6 1204 1281.91 6.47074  1355.98 12.62 
Tail_20×20_7 1294 1442.75 11.4954  1542.63 19.21 
Tail_20×20_8 1169 1293.97 10.6902  1281.93 9.661 
Tail_20×20_9 1289 1380.41 7.09122  1485.19 15.22 
Tail_20×20_10 1241 1341.23 8.07672  1386.62 11.73 
Average RPD %   9.218   12.79 

       
Table 9. Experiments in Fuzzy with Parallel Form (mi≠ 1) 

Problem Lower Bound 
DEM  MEM CPU Limit 

Time Cmax RPD%  Cmax RPD% 
5×5×2_1 119 127.979 7.54516  133.241 11.97 10 
5×5×2_2 164 177.593 8.28822  187.071 14.07 10 
5×5×2_3 123 135.179 9.90168  138.202 12.36 10 
5×5×2_4 135 147.577 9.31617  149.58 10.8 10 
5×5×2_5 225 246.379 9.50176  258.334 14.82 10 

10×10×3_1 406 439.241 8.18741  457.75 12.75 40 
10×10×3_2 385 417.308 8.39163  432.755 12.4 40 
10×10×3_3 308 338.336 9.84942  351.4 14.09 40 
10×10×3_4 220 241.075 9.57977  244.08 10.95 40 
10×10×3_5 315 344.734 9.4393  357.659 13.54 40 
15×15×4_1 376 413.1 9.86691  422.447 12.35 90 
15×15×4_2 359 403.436 12.3777  412.047 14.78 90 
15×15×4_3 408 452.204 10.8343  477.862 17.12 90 
15×15×4_4 463 524.975 13.3854  527.437 13.92 90 
15×15×4_5 425 467.509 10.002  479.794 12.89 90 
20×20×5_1 625 682.046 9.12741  720.544 15.29 160 
20×20×5_2 535 579.805 8.3747  585.372 9.415 160 
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Table 9. Continued 
20×20×5_3 598 659.51 10.2859  657.675 9.979 160 
20×20×5_4 559 605.285 8.27991  622.233 11.31 160 
20×20×5_5 620 667.136 7.60256  685.706 10.6 160 
25×25×5_1 900 967.28 7.47555  996.243 10.69 250 
25×25×5_2 935 1011.99 8.23374  1096.86 17.31 250 
25×25×5_3 1035 1107.55 7.00928  1144.27 10.56 250 
25×25×5_4 795 870.295 9.47106  930.986 17.11 250 
25×25×5_5 1072 1161.76 8.37359  1231.95 14.92 250 
30×30×5_1 1359 1457.62 7.25683  1524.04 12.14 360 
30×30×5_2 1109 1200.04 8.20957  1251.86 12.88 360 
30×30×5_3 1273 1375.01 8.01362  1452.01 14.06 360 
30×30×5_4 1236 1363.56 10.3205  1400.87 13.34 360 
30×30×5_5 1085 1192.99 9.95301  1245.07 14.75 360 

Average RPD %   9.12073   13.05  

 

Also we carry out an analysis of variance (ANOVA) test to investigate performance two 
algorithms. Table 10 shows the results of ANOVA. Since p-value <0.05 so can be said that 
there are significant difference between the two algorithms. Also by Fig.8 can be realized the 
efficiency of the algorithm DEM. 

Table 10: ANOVA: Results versus Algorithms 
Source df SS MS F P-value 

Algorithms 1 234.85 234.85 71.78 0.00 
Error 58 189.75 3.27   
Total 59 424.60    

 

 

Figure 8: mean effect plot for algorithms 

 
7. Conclusion and Future Research 

 In this paper, we presented a mixed-integer fuzzy programming (MIFP) approach for open 
shop scheduling problem with parallel machines at each stage to minimize makespan. Taking 
fuzzy assumption the desired problem was more practical and closer to the real world. We 
assumed that processing times is uncertainty and represented with triangular fuzzy number. 
Since it is known as NP-hard, to solve several medium to large-sized, we proposed a novel 
discrete electromagnetism-like algorithm (DEM). This algorithm made use of a decoding 
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procedure using a permutation list and for calculating force and moving particle used 
crossover operators. The proposed DEM algorithm was tested on a set of benchmark 
problems from the literature under the circumstance mi=1 and then mi≠1.  We applied the 
mean RPD for evaluating the performance of the DEM algorithm. Since the value mean RPD 
of the DEM under the terms of mi=1 and mi≠1 is 9.218 and 9.12073 respectively (As regards 
some of this difference is due to the fuzzy nature of the problem, because the lower bound is 
obtained in crisp condition), can find out that the DEM algorithm has good performance. 
Also we carried out an extensive comparison of the proposed DEM against MEM for same 
problem under a comprehensive benchmark of instances. The stopping criterion is set to a 
maximum elapsed CPU time for all the evaluated algorithms. After several statistical 
analyses, we can conclude that proposed method provides the best results for small instances 
and especially for large instances. 
 An interesting future research direction is to study the fuzzy open shop with non-identical 
parallel machine, and consider the problem studied here with the addition of some other 
assumption like no-wait or sequence dependent setup times, use our discrete EM to solve 
other scheduling problem and think over the multiple functions simultaneously.    
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