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In this paper, we consider the fuzzy open shop didireg problem
with parallel machines in each working stage wigrezessing times
are vague and are represented by fuzzy numbersopem shop
scheduling problem with parallel machines in eaabrking stage
under this condition is close to the real productischeduling
conditions. A mixed-integer fuzzy programming (MIFRodel is
presented to formulate this problem with the oliyecbf minimizing
makespan. To solve small-sized instances, an oiteea fuzzy
satisfying solution procedure is applied. Since flioblem is known
as a class of NP-hard, a novel discrete electrogtagn-like (DEM)
is proposed to solve medium to large size examplée DEM
algorithm employs a completely difference approdtchakes use the
crossover operators to calculate force and movecfeais used. We
employ Taguchi method to evaluate the effects tiEint operators
and parameters on the performance of DEM algoritkinally to
assess the performance of the algorithm, the seatdt compared with

an existing EM algorithm from the literature and benchmark
problems. The result exhibited the ability of theogpsed DEM
algorithm to converge to the efficient solutions.

1. Introduction

Scheduling includes the allocation and sequendiragtivities that need to be performed in a
set of limited available resources .[Generally, these problems can be defined by afset
jobs that need to be processed by a seh oforking stages. Several production workshops
are defined by their different attributes that Ingjdo the processing rout of their jobs. One of
them is open shop scheduling problem (OSSP) inlwdach job has to be processed on each
one of them stages. However, some of these processing timesbmagero. There are no
restrictions on the routings of each job. So is tase, the scheduler is allowed to determine
a route for each job and different jobs may havewtint routes [2]. OSSP can be appeared in
a service environment such as a network of diagnossting facilities in hospital where
patients can do their tests at various test cemeas arbitrary order [3]. Other applications
that can do pointed out to them are as followsommobile repairsatellite communications,
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teacher—class assignments, semiconductor manufagt@guality control centers, and flight
timetabling for airlines [4, 5]However real production floors rarely use a simgkechine for
each operation and sometimes processing timesoduedsurement errors and human impact
on production processes are vague, but usuallggke shop scheduling problems in which it
is commonly assumed that each stage has one maaMmihprocessing time is deterministic.
Indeed the purpose of replicating machines in ferial to leveling the speed of the stages, to
increase the revenuand capacity of the shop floor, or to reduce thpaaot of bottleneck
stages on the overall shop efficiency.

In open shop scheduling problems, the processider @f operations is arbitrary. Thus, the
solution space of an open shop problem is largan tthat of job shop and flow shop
problems. If the number of machines is more tham, tlven OSSP is NP-hard [6]. In open
shop scheduling problem with parallel identical hiaes, three decisions must be taken
following: (1) Processing route determination (2bJsequence determination (3)Job
assignment to machines inside each stage. Therdifiisgoroblem is at least as hard the hard
OSSP and is a class of NP-hard problehassolve such a problem medium and large size,
use of exact methods is often unpractical and reguihe use of efficient metaheuristic
methods.

Naderi er al. [7] formulated an open shop schedutiroblem to minimizing total tardiness.
They presented four mixed integer linear problems @SSR and then investigated the
complexity of these models. They designed Genetlgothm (GA) and Variable
Neighborhood Search (VNS) and investigated thecetiEvarious operators on the GA using
Taguchi method. Liaw[8] considered the problem dfexluling preemptive open shop to
minimize total tardiness. He developed an efficieostructive heuristic for solving large-
sized problems. He also presented a branch-anddbalgorithm for solving medium-sized
problems. Mosheiov&8ron[9] addressed batch scheduling problems om-amachine open
shop to minimizing makespan and flow time. Theyuassd identical processing time jobs,
machine and sequence-independent setup times &ctd dailability. Su et al. [10] studied
two models of two-stage processing with flow shotha first stage followed by open shop at
the second stage to minimize the makespan. Theyopea an integer programming model
and a branch and bound algorithm for model 1 almdvar bound developed for model 2 as a
benchmarks for the heuristic algorithms. Naderalet[1]] investigated an open shop that
each stage consists of a set of parallel machmesintimize total completion times. They
suggested a mixed integer linear programming mimadehis problem. Also, they presented a
memetic algorithm (MA) for solving the problem.

Panahi&Tavakoli-Moghadam [12] offered an efficiamethod based on Multi-Objective
Simulated Annealing (MOSA) and ant colony optimiaat (ACO) for an open shop
scheduling problem with minimizing makespan andiltaardiness. They also applied a
decoding operator to improve the quality of prodlsehedules. Sha et al. [13] proposed a
Multi-objective particle swarm optimization (MOPS@Jgorithm for OSSP with multi-
objective. Due to the discrete of scheduling protdeand PSO application in continuous
optimization problems modified the particle positicepresentation, particle velocity, and
particle movement.
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Electromagnetism-like (EM) is one of new methaushie field of optimization based on the
swarm intelligence. This optimization method workspired by the existing rules of

electrostatic systems and inherently used for naptis minimization problems [14]. This

algorithm makes use of a small number of parametad appropriate values of the

parameters can be easily determined by performavgral simulation. The EM has been
used for solving various problems such as routiodplems [15, 16], Fuzzy solving equations
[14], Neural Network analysis [17], Multifunctionabntrol [18] and scheduling problems

[19-21]. Naderi et al. [22] presented EM for OSSRhvsequence-dependent setup times.
They incorporated a fast search engine and a simipieilated annealing to improve

algorithm performance.

Following a brief review of the literature is prded in the Tablel. The table contains type of
the objective function and solution methods.

Table 1. Category articles in the term of the ofiyecfunction and solution methods.

Reference

Objective function

Single objective Multi objective

Solution

Methods(metaheuristic)

total weighted
tardiness , total

Noori-Darvish et.al [23] . . MOPSO
weighted completion
times
Hashemi Doulabi et.al[24] the sum of weighted HSA
earliness/tardiness
penalties
Yu et al. [25] makespan SA
Naderi et al. [7] makespan GA, VNS
Roshanaei et al. [26] makespan SA
makespan, total flow MOPSO
Sha et.al [13] time and Machine idle
time
Naderi et al. [22] Total completion times EM
Gonzalez et.al [27] Expected makespan GA
Matta [3] makespan GA
Low& Yeh [28] Total tardiness GA
total weighted TS
Seraj& Tavakkoli- tardiness , total
Moghadam[29] weighted completion
times
Zhang& Wu [30] total weighted SA & GA
tardiness
Sha& Hsub[31] makespan PSO
Huang& Lin [32] total weighted tardy TS
jobs
Senthilkumar&Shahabudeen[33] makespan GA
Blumé& Sampels [34] makespan ACO
Liaw [35] total tardiness TS
Blum [36] makespan Beam-ACO
Liaw [37] makespan TS

The inherent uncertainty in the parameters of nodeincreasingly being taken into account
in various fields. Moreover, there are several factors invdlie real-world scheduling
problems that are often vague or uncertain in eafliis is especially true when the factors
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that made human, considered into the problems. , Tphasameters are often faced with
uncertainties.

Accordingly, production scheduling problems candpgded into two general categories:
deterministic scheduling and uncertain schedulirdplems [38, 39]. There are basicailyo
approaches to deal with uncertainties [40], suclthasstochastic-probabilistic theory and
possibility theory or fuzzy set theory [41, 42].

In this practice, fuzzy set theory is applied #@aling with the uncertainties in scheduling
problems. It provides an appropriate alternatieeework for the mathematical modeling for
real-world systems and offers several advantagesceged with the use of heuristic
approaches:

e Probability theory needs considerable knowledgeutbwe statistical distribution of
the unknown parameters. Vs, fuzzy theory provide effiective way to model
uncertainty even when no historical informatiomvsilable [43].

e Using stochastic-probabilistic theory includes coemgnsive computation and
requires thorough knowledge on the statisticalrithgtion of the uncertain time
parameters [44].

e The use of fuzzy set theory reduces the comput@ticomplexity of the scheduling
problem compared with the stochastic probabiligtenry [45].

e One of the capabilities of fuzzy theory, the usduazy rules in heuristic algorithms
[39].

Konno& Ishii [46] presented a model for a preemg@topen shop scheduling problem with
fuzzy resource and allowable time. Their problend He-criteria to be maximized, i.e.,
minimum degree of satisfaction with respect toitttervals of processing jobs and, minimum
satisfaction degree of resource amounts applietthenprocessing intervals. Palacios et al.
[27] investigated the OS$Rvhere processing times were fuzzy. They suggeatdaA
algorithm to minimize average maximum completiandiof jobs. Noori-Darvish et al. [23]
addressed a OSSRith Sequence-dependent setup times, fuzzy priogeimes and fuzzy
due dates. They presented a new bi-objective pbsstmixed-integer linear programming
model to minimize total weighted tardiness andltet@ighted completion time&or solving
small-sized instances, an interactive fuzzy muljeotive decision making (FMODM)
approach, called TH method proposed by Torabi aassHi[47], is applied.

In this study, we present a mixed-integer fuzzygpamming (MIFP) model for OSSP with a
set of parallel machines at each stage. Furthermaore devise a novel discrete
electromagnetism-like algorithm to solve the coasd problem and use the benchmark of
the Taillard[48] as lower bound to evaluate thefgpenance of the algorithm. The rest of the
paper is as follows. A MIFP formulation of the piein under study is set out in Section 2. In
Section 3, we suggest an interactive fuzzy satgfygolution procedure to the proposed
model. Computational results indicate that the Mik&del can be solved in reasonable CPU
time to run, for only limited number of jobs. Faroplems with larger number of jobs, we
describe a Discrete Electromagnetism-Like algori{@&M) in Section 4. We describe the
experimental design to evaluate the posed metha@dtion 5. Finally, concluding remarks
are given in Section 6.
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2. A MIFLP formulation of the problem

In formulating scheduling models, parameters sucfol processing, ready and setup times
are generally considered as deterministic valuesvdver, in real-world situations, these
parameters are often uncertain values. Time redjiagrocess parts on machines cannot be
determined exactly due to measurement errors anthtlolvement of human activities in the
manufacturing process. Due to the inconsistencythim performance of operators and
machines at the shop floor, repeated measuremetiteofystem’s parameters provides a
certain range of values. Therefore, the informatleat we have about the model parameters
is often vague and imprecise [49, 38]. In a sitrativhere we lack enough information to
define the parameters, qualitative expression thestiby linguistic variables like ‘too short’
or ‘about 100’ are often used based on ambiguotss tfafact, fuzzy set theory provides the
tools to deal with uncertain model parameters, Wwrace not as deterministic values but
rather as interval values representing estimai@s [5

In this section, we formulated a mixed-integexziyi linear programming (MIFLP) model
for open shop scheduling problem with a set of lpgmmachines at each stage that presented
by Yimer & Demirli [51] . The parameter that is ag#d to uncertain time (processing) is
offered by triangular fuzzy sefs, =(p?,, p/", p;,) . Here, the objective will be minimizing the
makesparCna, that is, the time lag from the start of the fiogteration until the end of the
last oneA problem often denotedFuzzPQ||Cmaxin the literature.

2.1. Nomenclature

We need to introduce the notations including pa&tans, indices and variables used in the
model. The parameters and indices are definedlte$&, 3 and 4.

Table 2. Indices used in the models

Index For Scale
j.k Jobs {12,...n}
il Stages {12,...m}
r Machines {12,..m}
Table 3. Deterministic Parameters used in the nsodel
Deterministic Parameters Description
n The number of jobs
m The number of stages
m The number of identical machines in stage
0j The operation of job j in stage
M A large positive number
Table 4. Fuzzy parameters used in the models
Fuzzy parameters Description
Pj.i The processing time df;
Gj i The completion time 0b; ;

Z(X) imprecise makespan
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Marketing above the symbol indicates that theséalibas represent vague values or fuzzy
numbers.

Binary integer
X i1 1ifO; is processed aft€;

or 0 otherwise €{1,2....m-1},1>i
Y;ik 1if O; is processed afté€;

or 0 otherwise £{1,2,...,n=-1}, k>
Zjir 1if G; is processed orth machine in stage

or 0 otherwise e{1,2,....n}.

General variables

¢ (X) fuzzy solution space

x:(X) crisp solution space

X a feasible solution vector of decision vialéa X € y; (X) U y.(X)
A fuzzy goal satisfying level0 < 4 <1)

2.2.The proposed model

Fuzzy goal function The objective is to minimize the completion timiethe last delivery
among then jobs, commonly referred to as the makespan. ieleted to theéhroughputof
the schedule. Because throughput is defined aartteaint of work completed per unit time,
and because the amount of work in thpb model is fixed, we maximize throughput by
minimizing the makespan[52].

The fuzzy objective function (bives the imprecise makespan of all jobs:

Z(%)=Cy (1)

ax
Crisp solution space: The constraintrelated to the each job is processed by only one
machine at each stage does not depend on the tinzeyariables. So, it is considered to be

crisp.

m
ZC(X)EZZj,i,r =1 VJ’I (2)
r=1

Z: €101 Vi, j,r (11)
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Fuzzy solution spaceconstrains related to the time imprecise parambtdong to the space
of fuzzy solution. The fuzzy constraints include:

x1(0)=Cj; 2P, )i 3)

C,2C +P;-M@-x,) Vi,ief12,..,m-1i<I (4)

Ci 2Cji+P;—Mx(x;,) vj,ie{12,..m-1}i<I ()

Ci 2C +P ~Mx (A=Y, )-Mx(2-Z,,, ~Z,,,) (6)

vi,r, je{12,...,n-1, j <k

c~:k,i ZC~:j,i + IS]I M (Y )-Mx@2-2Z;;, - Z;,) (7)

vi,r, jef{l2,...n-1,j <k

X e{oy vj,ie{l2,..m-1,i<I 9)

Y,k € {01 Vi,je{l2..n-1, j<k (10)

Constraint set (3) assures that the completion timeach operation must be greater than its
processing time. Constraint sets (4) and (5) spettie relation between each pair of
operations of a job. For example, the completioretofO;; must be greater than that©f; if
job j visits stagei after stage I. Similarly, constraint sets (6) g}l define the relation
between the completion times of each pair of jobsach stage. For example, the completion
time of O;; must be greater than that Gk if job k proceeds job j in stageif they are
processed by the same machine. Constraint setd (9)define the decision variables.

2.3.Fuzzy goal programming

The imprecise and vague time-dependent paramerersexpressed by fuzzy sets. The
degrees of membership functions for the fuzzy nusilparameters are defined based on
psychic judgments. Symmetric triangular fuzzy numbéehe simplest form function of fuzzy
numbers, which is made of two basic estimations,nlost possible value, and the maximum
deviation from it [53].For example, a symmetric triangular membership tiondor a fuzzy
processing tim@, , can be defined by:

Pi= R P = (AT, BT RI™) = (Pl BT P

Values of the left and right of the center have tbwest likely to belong to the set of
possible values, so, their membership degree & Zdre most likelihood value, which is in

the middle of the bound, has the highest degreraerﬁbershi;bua(Pj’]‘) =1].Other values in

the span oﬁi, will assume to be a linearly varying membershipction in the interval
[0, 1]. Figurel shows a symmetric triangular merabgr function forlsjyi . Also, the fuzzy

objective function can be defined in terms of twetedministic objective functions for
makespan:
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Z(X)=Z2™(X)+2°(X)
where

Z"®) =C™ Z°(%) = Corax (13)

Similarly, the fuzzy solution spage(x) given by Eq. (3)-(7) can be defined as a combinatio

of two sets of crisp constraints which are as fefio

X1 (X) = xm(R) £ 75 (X) (14)
where
Im(X)=C™Mi =2 P™ Vi
C"i=C"1+P™i =M (l—Xj“) vj,i e{lZ,...,m—l},i <
CMiy 2CMi +P™i =M x () Vj,ie{l2..,m-1,i<|
C"ii2C™i+P" i =M x@A-Y,; )-MxQ2-Z;;, -Z;,)
vir, je{l2,...n-1,j<k
C™i=C"i+P™i -M x(Yj’i’k)—M X (2—Zj’i,r ~Zyi,)
Vir, jefl2,..,n-1}j <k
X €101} vj,ie{l2,..m-1, i<l
Yk €101 Vi, je{l2,..n-1, j <k
and
75(X)=C%i 2P’ i (15)
C%i 2C% 1 +P%ji =M (@L-X; ) Vj,ie{12,..m-1,i<I
Coli2Coi+P%i =M x(x;,) Vj,ief{12,...m-1i<I

Colki2Coi+P%i =M x (Y1, )-Mx(2-Z,;, = Z;,)
vir, je{l2,...n-1,j<k
C%i2Coli+P2 i -Mx (A=Y, ) -Mx(2-Z;;, = Z,;,)

Vir, jef{12,..,n-1},j<k
X €101} vj,ie{l2,..m-1, i<l

Y, i €101 Vi,je{l2..n-1, j<k
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A fuzzy decision is obtained by considering theeiséction of the fuzzy objective and the
whole space solution. When information relatedhi @bjective function and constrains sets
is vague, the problem can be formulated as a goayf programming problem which is
described below:

Find: X (16)
To satisfy: Z(X) = Z™(X) and  Xey.(X)Uy;(X)
where

X is a solution vector of decision variables in feks solution spacg.(X)u x; (X), and

Z™(X) related to the goal fuzzy objective. The symbsl ‘in the constrain indicates that the
resulting makespariZ (X)) should be around expected valiB(X) with some symmetric

deviation Z? (X) on both sides.

3. Solution approach

For the problem is presented in previous sectiba,dbjective function will be a triangle
symmetric possibility distribution. This functionar be defined by three vertices

Z(x)=(Z"(%),Z2™(%),Z" (%)).

In fact minimizationf(i) is obtainedby moving the three vertices towards origin; urnties
condition, the problem becomes a certain multi-ctiye linear programming by converting
Z (X) into three interdependent crisp objectives [53].

Indeed, three objective functions: Minimizing thesh possible valug (x), maximize the
possibility to obtain lower objective functian(x) and to minimize the risk of getting high
objective functiorZ;(X )

Min  Z,(X)=2"(X) 17)
Max  Z,(X)=Z™"(X)=2Z°(%)

Min  Zy(X) =Z"™(X) = Z°(X)

Subject Xe y (X)L x5(X)

Z°(X), Represents the symmetric deviation from the furayber.

By using fuzzy decision making of Bellman and Zg8éhand fuzzy programming method
of Zimmermann[55], MOLP problem can be transforrmed single goal linear programming
problem. The initial values are obtained for thesipee and negative ideal solutions by
solving each of the above functions separately:
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ZP3(x) =Min  Z2™(x) (18)

ZN5(%) = Max  Z™(X)
ZY5(%) =25 = Max  Z°(X)
ZYS(X) =255 =Min  Z°(x)

By using membership functions outlined below, tligective functions are converted into
fuzzy goals.

zNs -z, (19)
m(Z,) = W

Z,-2)%
to(Z,) = w

Z3N'S ~Z,
s(Z3) = W

Applying membership functions expressed and thezyfudecision of Bellman and
Zadeh[54],the MOLP problem can be represented:

Maximine: min{u;(Zy), 15 (Z5), 115(Z3)} (20)
Subjecto: Xe y. (X)u y:(X)

Finally, by introducing an auxiliary fuzzy goalstisfying levell (0<1<1), the MOLP
problem can be reduced to single objective fornkapkoblem of Zimmermann [55]:

Maximine: A (21)
Subjecto: A<y (Z) fori=123

Xe x. (X)L x5 (X)
In Eq. (21) high value ofl indicates that the objective functions are optirdizéth a high
degree of confidence.

4. Proposed discrete Electromagnetism-like algorithm

As mentioned in sectionl, the problem considereduinstudy belongs to class of NP-hard
problems. So, for solving medium to large size f@ots, we suggest an efficient DEM
algorithm.

4.1.Classic EM

Electromagnetism-like (EM) is one of new methaushie field of optimization based on the
swarm intelligence. It was introduced by Birbil alRang [14]. The main idea of EM is based
on the attraction-repulsion mechanism of electrametigm theory (Coulomb’s law). In this

algorithm each solution is considered as a chapgaticle and the charge of particle is
belonged to its objective function value. The sadl@bsorption or desorption on candidate
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solutions in the population is determined by thiarge. The route of this charge for particle
is determined by adding the exerted pressure ofother particles on particle In this
mechanism, a particle witkuperiorobjective function value attracts the others omésle a
particle withinferior objective function value excretes the others oiiée. charge for each
particle is calculated by the following formula:

(22)
qi =exg-n popsii;e(yl) - (ybESt)

3 (F(y9 - f(y™)

k=1

In Eq. (22), f(y')andf (y**") denote the objective function value of particnd the best
solution. The force of particleis calculated as follows:

o j _ ,
~ popzize (yl - yl)ﬁ f(yj) > f(yl)
Fi=2 » , Vi (23)
a (yi—y")—iqu = Ty < f(y)
Iy =y i

The general scheme of EM is shown in Fig. 1. dtudes four phases: initialize, computing
of total force exerted over each particle, movirgtiples in the direction of the force and,
local search.

Procedure Electromagnetism algorithm
Initialize ()
While (hasn't met stop criterion) do
Local Search ()
Calculate total force F ()
Move particle by F ()

Evaluate particles ()

End while

Figure 1. The fundamental procedures of EM
4.2.Proposed DEM

Although the results of applying the EM was veriisfactory for continuous space problems
but these results was not enough for discrete spard@ems [14].the main reason that EM
cannot be used for discrete problems is that itxaiprs (force calculation and movement)
are not compatible with this type of spaces.

Since the scheduling problems are in the categbdiscrete problems, in this research, we
have developed the classical EM to DEM that is dlesd in:
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4.2.1. Encoding and decoding outlines, initialization

Coding scheme is a procedure which makes an #igois able to identify a solution. One
of these schemes is permutation list. In this methostring that contains nxm array is
designed. In fact, we produce a random permutatdnthe elements of the set

A={12..nxm} (n=jobs numberm= stages number). Suppose, n=2 and m=3, the dging
generated by the following:

011 012 013 021 022 023

s [ *# [ [ & ]z 3]
Figure 2. lllustrates a permutation list.

Fig.2. indicates that an operation is placed iruseage according to its corresponding number
in the second string. According to the Fig. 2,iedtfjob3 is processed over stagel, and then
job2 is processed over stage2, etc.

Non delay schedule is applied to decode the pextoutlist.

Non delay schedulethis schedule is investigated under the termsesdn, the search
space is reduced by this decoding so that the apsoiution does not disappear from it. We
apply procedure proposed in [56] and later usd@1ift all operations are placed in a sé) (
including unscheduled operations. We calculatehich equals the minimum of the earliest
possible starting times;) of operations irJ. All the operations whose starting time is equal
to y are assigned to a set called Among the operations iR, the operatiorD™ with the
earliest relative position in permutati@ns scheduled and extracted fraunin this decoding,
we assign the jobs to the first available machinevary stage. Fig. Blustrates the decoding
scheme.

Procedure non-delay schedule
U=all operation in given permutatich

While U # ¢
y= mln{S” of O” IOU EU}

R= {qj lsj=y.G; eV } %R IS a set of operations whose starting times are gqual

ChooseO’ from the set oR with the earliest relative position in permutatidn

ExtractO’ from U

Figure 3. The procedure of decoding scheme by ineipal of non-delay schedule
4.2.2. Calculating total force and particles movement

This study applies the modified EM that proposgdDebels et.al. [57], to obtain the total
force exerted on the particle. In this procedursedoot determined the force exerted on
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particle i from particle j by using the fixed chargfqg andg;. In place of,qg; is related to the
relative difference of(x') and f(x).
In the proposed algorithm, the roulette-wheel isdu select particleand particlg. After
selecting two particles the particle charge is cotag as follows:
- f(x)
1] f (Xworst) —f (Xbest)

If the objective valud (x') is larger tharf (x'), particlej will attract particlei. from the

(24)

other point of view, whefi(x') < f(x!) , particlei will attract particlej and there is no

action whenf (x') = f(x!). More, the force exerted on parti¢lby particlej is calculated as
follows:

F =(x0 x)®q, (25)
Now, the particle move from solutigto X; @ F;; in the direction ok;.The definitions of the

operator© and operater are as follow.

The subtract operato® . This is applied as Rosltased Crossover and Linear Order
Crossover that following in:

Before ruining operat©@ , opercor is usedi¢termine the number of dimensions and
uses the following expression:

L =[qg; xn|

In the above equation n indicates the number oedsion.

Position-based Crossoverlfg; >0, valueL is rounded to up, then to the sizelgfis

randomly selected dimension from particlend moved to new particle and the rest of
numbers chosen from partigleif g; <0above procedure is reversed (place two particles ar

reversed).Fig.4 is shown the implementation stépghe operator. Suppose the permutation
of the particle andj is the following and, = 023, so the number dimensions of each particle

are 6. TherL=6x0.23=1.38. Becausg > Owe randomly select 2 dimensions of partigle

that dimensions 1 and 5 are selected and trandfeareew particle. We remove the numbers
of particlej that are selected from partiéland place the rest into the new particle according
to their same order in partidle

Liner order crossover (LOX): at first introduced by Falkenauer & Bouffouix [5&orks as
follows:

A subsequence of operations from a parent is rahdgelected, and then is created the
initial part of the offspring by copying the subseqce into the corresponding position of it.
The operations that are currently in the subsequém the second parent are deleted and
finally the operations are placed into the unfixesitions of the offspring from left to right
according to the order of the sequence. This pureed shown in Fig. 5.

In fact, the difference of two crossover operat@shat in position-based crossover
dimension is randomly selected but in Linear Ordwossover part of the parent
chromosomes are selected lenigthnd are copied into the offspring.



14 A. Jafari et al.

Parant](Xj ) 1 5 2 4 6 3

v
Offspring (Xj OXx)- o - 3 2 4 -T
— T~ 4

Parantz()(i )

Figure 4. lllustration of the Position-based Cragsmperator

Selected subsequenge

Parant:l(Xj ) 1

Offspring (Xj © Xx)- q 6

1
t T~

Figure 5. lllustration of the LOX crossover operato

The add operatéd. This operator can be considered as Extension recedence
Preservative Crossover [59] and called EPPX. EPP3hown as followsa string of equal
length as the particle is produced then all ofeimments are filled with random number at

[0, 1]. This string defines the order in which etts are successively drawn fromandr;
. The offspring is initially empty. Start with tHest element ofx; and F; , when thekth
element is selected, iffj <R(Q; >R) corresponding number 10, (F; ) is transferred to
offspring, if selected element comes from (F; ) anddth (d>Kk) element irF;, (%), then

delete element from ,F; and shift the elements d¥;,(x;) between point k and d right

ij?
once. The step is repeated urtilF; are empty and offspring is obtained. Fig.6 déssian

illustration of EPPX. Supposg = 046.
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3 1 5 2 4 6 3
string 0.2 0.1 0.5 0.56 0.43 0.82
X 3 2 1 6 4 5
offspring 3
1 5 2 4 6
2 1 6 4 5
3 2

1 5 4 6
1 6 4 5

[ ]

[ ]

[}
offspring 3 2 1 5 6 4

Figure 6. An illustration of EPPX
4.2.3. Local procedure

This algorithm selects the best solution in theheiieration and perturbs the solution by
moving the two points at random, and then findokgctive value. If the objective value of
the new solution is better than the best solutibae,new solution will replace it. Otherwise
If the objective value of the new solution is wotisan the best solution, and is better than the
worst solution, it will replace the worst solutiddo the worst solution is found and this new
solution will replace it. Therefore, it attemptsit@prove average solution iteratively.

5. Algorithm’s calibration

Parameter setting is an important part of thegiasg algorithms because we can adapt
algorithm to the problem. So in this section, tke@dvior of DEM with different operator and
parameters are appraised. Several REEN be obtained with different combinations of
parameters and operators.

Between the alternative experimental examinattbesTaguchi method is more efficient for
calibrating the algorithm because it can surveyegams decision variables with a small
number of experiments [60]. In the Taguchi methadiors are categorized into two main
groups: controllable and noise factors. Noise factwe those that we have no direct control
over them. Since the removal of these factorstsnoimpossible, the Taguchi method seeks
to minimize the impact of these factors and to wmheitee the optimal level of controllable
factors [61]. Taguchi studies the impact of factonsthe response variable variance and then
based on the mean response variable determinesmipect of the factors that are not
effective on the variance. The main reason why €hgmethod is regarded as the design is
that it tries to adjust the stability of the algbm so that uses the ratio S/N which in fact
determines ratio Signal to Noise. Taguchi classifit objective functions into three groups:
the smaller-the-better type, the larger-the-bditpe, and nominal-is-best type. Considering
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that almost all functions in scheduling are the lfam#he-better type, their corresponding
S/N ratio [62] is.

% ratio = —10log, ,(objective function)? (26)

Table 5 shows the factors that need to be tunddtivdir levels.

From standard table of orthogonal arrays, thgi& chosen as an orthogonal array for the
algorithm. We generate a set of 25 instances &snfel we have 5 combinations (4x4, 5x5,
7x7, 10x10, and 15x15). There exist five replicatéth differentm (number of parallel
machine in each stage), that is generated fromifaromdistribution over (2, 4) for each
combination thus summing up to 25 instances. Theqgssing times are randomly generated
from a uniform distribution over (1, 99 order to conduct the experiments, we implement
DEM in C# and run on a PC with 2.0 GHz Intel CorBd and 2 GB of RAM memory. We
use relative percentage deviation (RPD) as a compesiormance measure to compare the
methods. RPD is calculated as such:

_ Alg,—Min 27

RPD 9l .100

Ming,
whereAlgs. is Cmax 0btained for a given algorithm and instance Bk, is the lowesCrax

for a given instance obtained by any of the alpons.
Table 5. Factors and their Levels

Factors Level Type

(1) Position-based Crossover

Crossover Operator 2 (2) Linear Order Crossover
Population Size 3 10 20 40
Number of Local Search 3 15 25 50

We run DEM for each trail of Taguchi experiment.blea6 shows the results that are
transformed into S/N ratio. Fig.7 shows the mesiorobtained for each level of the factors.
The optimal level of factors becomes: CrossovesitRm-based, Population-Size= 20, Local

Search number 50.
Table 6. The results are transformed into S/N ratio

Cross_Type Pop Size Local No  Traill Trail 2 TRl Trail 4 Trail 5 S/IN

1 10 15 20.33 25.61 28.82 26.69 21.90 -27.91
1 10 25 21.06 22.07 27.80 18.72 26.41 -27.41
1 10 50 19.51 17.63 16.34 18.00 18.37 -25.11
1 20 15 10.84 14.13 11.58 12.69 14.08 -22.10
1 20 25 10.51 10.74 12.70 10.59 13.95 -21.42
1 20 50 9.91 8.65 6.72 7.92 5.54 -17.95
1 40 15 17.06 16.80 16.18 10.61 13.94 -23.59
1 40 25 15.11 17.13 16.56 15.81 15.89 -24.14
1 40 50 18.54 16.57 19.59 18.83 20.18 -25.47
2 10 15 25.60 25.11 20.27 20.55 22.56 -27.21
2 10 25 24.19 24.93 23.45 25.92 25.31 -27.88
2 10 50 23.78 20.72 19.28 17.74 21.28 -26.30
2 20 15 18.67 16.54 14.54 15.60 14.92 -24.15
2 20 25 13.69 14.64 15.16 14.74 17.25 -23.60
2 20 50 12.07 13.77 12.55 13.83 10.96 -22.07
2 40 15 16.70 15.16 16.69 16.78 14.27 -24.06
2 40 25 17.76 17.67 19.00 19.53 18.03 -25.30
2 40 50 21.12 20.70 18.03 20.41 19.55 -26.02
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Figure 7. The mean S/N ratio plot for each levetheffactors
6. Experimental result

In this section, we intend to appraise the FMmBdel and the proposed DEM algorithm.
At first small-sized problems are solved to evauidite mathematical model and also DEM
algorithm against the results obtained from the ehodve implement FMILP model in
CPLEX 10.1 and the algorithms in MATLAB 7.6 and rom a PC with 2.0 GHz Intel Core 2
Duo and 2 GB of RAM memory. In this paper, the piog criterion used when testing all
instances with the algorithmsisn xm x 0.4 s.

For the experimental study we use [63] and geaaaet of fuzzy problem instances from
well-known benchmark problems from Taillard [48). fiact each crisp processing tirmes
converted into a symmetric fuzzy processing tis(t} so that a certain value 8 =t andp",
p® are random values, symmetric w.r.t and generateghsoTFN’s maximum range of
fuzziness is 30% op?.under these conditions, the optimal solution af tisp problem
provides a lower bound for expected fuzzy make$pah 10 fuzzy instances were generated
from each crisp problem instance.i8dotal there are 250 problem instances.
Computational results for Small to medium size &mdlarge size Table 7, 8 and 9 are
respectively collected. In these tables Lower BouiMiLP Model, DEM and ME
respectively indicate to solve crisp instances layllard [48], solve fuzzy instances with
CPLEX10.1, solve fuzzy instances using the propadgdrithm and solve fuzzy instances
using the suggested algorithm by Chang et al. Té#¥].mathematical model is allowed a
maximum of 1000 s of computational time.

Since the investigated problem is the fuzzy opleopsscheduling problem with parallel
machines at the stage so at first we suppgsé to evaluate the model and algorithm. In this
case, first the small size problems have been edudith Tillard’s benchmark which is a
lower bound for our problem. As shown in the Ta®|éy taking that we have added fuzzy
assumption, the difference of the MILP model wilvér bound is negligible. Also according
to the obtained values by algorithm DEM can beizeats performance.
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Table 7. Small Size Experiments (Fuzzy without Baltg m=1)

MILP Model DEM MEM
Lower CPU CPU Limit CPU Limit

Problem o - Crnax Time Cinax Time Cinax Time
Tail_4x4_1 193 205.28 20.10 206.79 6.40 208.87 406.
Tail_4x4_2 236 251.10 19.58 251.129 6.40 254.65 406
Tail_4x4_3 271 284.29 18.59 287.01 6.40 287.81 406.
Tail_4x4_4 250 266.92 22.29 264.246 6.40 269.85 406
Tail_4x4_5 295 311.74 20.25 312.322 6.40 318.15 406
Tail_4x4 6 189 200.79 12.48 198.511 6.40 198.91 406
Tail_4x4_7 201 212.95 15.52 213.995 6.40 211.29 406
Tail_4x4_8 217 228.96 12.80 229.576 6.40 230.60 406
Tail_4x4 9 261 276.91 24.77 275.302 6.40 282.77 406
Tail_4x4_10 217 229.46 20.33 232.099 6.40 235.61 6.40
Tail_5%x5_1 300 321.90 54.91 325.22 10.00 325.48 0.0a
Tail_5x5_2 262 281.12 47.09 284.135 10.00 284.12 10.00
Tail_5x5_3 323 344.89 74.99 345.025 10.00 345.15 10.00
Tail_5x5_4 310 328.72 45.08 326.903 10.00 333.96 10.00
Tail_5x5_5 326 350.29 88.53 350.54 10.00 34991 o0.0a
Tail_5x5_6 312 334.65 88.55 339.991 10.00 341.41 10.00
Tail_5%x5_7 303 322.06 37.23 323.352 10.00 328.40 10.00
Tail_5%x5_8 300 318.956 81.23 323.346 10.00 32.98 10.00
Tail_5%x5 9 353 373.912 95.11 380.006 10.00 34.00 10.00
Tail_5x5_10 326 347.477 81.83 350.934 10.00 I35 10.00
Tail_7x7_1 435 514.438 1000 466.589 19.6 470.552 19.6
Tail_7x7_2 443 512.912 1000 482.432 19.6 487.322 19.6
Tail_7x7_3 468 550.592 1000 510.785 19.6 510.356 19.6
Tail_7x7_4 463 522.257 1000 509.027 19.6 499.813 19.6
Tail_7x7_5 416 468.926 1000 459.151 19.6 465.336 19.6
Tail_7x7_6 451 537.998 1000 483.587 19.6 504.25 961
Tail_7x7_7 422 495.524 1000 456.472 19.6 462.28 961
Tail_7x7_8 424 507.255 1000 469.284 19.6 469.137 19.6
Tail_7x7_9 458 520.755 1000 502.55 19.6 502515 961
Tail_7x7_10 398 461.154 1000 424.128 19.6 438.36 19.6

For large-size problem we have evaluated our algorand the Modified EM (MEM) of the
Change et al. [64] with the lower bound of Tillasddenchmark. We have used RPD as a
common performance measure to compare the metAdas.RPD of DEM is between
3.19846and 12.36. The mean RPD of DEM is 9.218% and thanni®PD of MEM is
12.79%. According to the mean RPD and considefuheness of the OSSP can be realized
the effectiveness of DEM. Since that the mean RPEh® DEM algorithm is better than
MEM algorithm then can be realized that DEM is mefficient than MEM. These results are
shown in Table 8. As previously described, weillestigate the fuzzy open shop scheduling
problem with parallel machines so in the here itigage states that 1. In this case we
have considered the performance of the DEM by lol@nd that is obtained of solving
model in deterministic mode. We performed eachh&f éxamples 5 times for different
examples. As shown in the Table 9. RPD of the DENd@tween 7.00928 and13.3854, and
the mean RPD of DEM is 9.12073%., As regards sohtki® difference is due to the fuzzy
nature of the problem, because the lower boundtaired in crisp condition, can understand
that the DEM algorithm has good performance. Als® thean RPD of MEM indicates that
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DEM algorithm is better than MEM algorithm (the me@PD of MEM is smaller than MEM

algorithm). These results are shown in Table 9.
Table 8. Large Size Experiments (Fuzzy without Relram=1)

DEM MEM
Problem Lower Bound Criax RPD% Cmax RPD%
Tail_10x10_1 637 701.191 10.077 683.105 7.238
Tail_10x10 2 588 660.677 12.36 645.313 9.747
Tail_10x10_3 598 662.027 10.7069 677.996 13.38
Tail_10x10 4 577 635.445 10.1291 647.966 12.3
Tail_10x10_5 640 660.47 3.19846 680.993 6.405
Tail_10x10 6 538 599.37 11.407 631.998 17.47
Tail_10x10 7 616 659.793 7.10933 699.251 13.51
Tail_10x10 8 595 636.899 7.04183 635.84 6.864
Tail_10x10 9 595 631.478 6.1307 642.759 8.027
Tail_10x10_10 596 635.514 6.62982 656.426 10.14
Tail_15x15 1 937 1054.57 12.5472 1067.52 13.93
Tail_15%x15 2 918 998.459 8.76455 1032.65 12.49
Tail_15%x15 3 871 936.259 7.49239 1000.52 14.87
Tail_15x15 4 934 1019.01 9.10169 1070.66 14.63
Tail_15%x15 5 946 1023.21 8.16196 1102.73 16.57
Tail_15%x15 6 933 1010.85 8.34393 1047.81 12.31
Tail_15%x15 7 891 971.593 9.04521 1046.32 17.43
Tail_15x15 8 893 967.635 8.3578 967.39 8.33
Tail_15x15 9 899 1009.21 12.2594 958.456 6.614
Tail_15x15 10 902 1010.7 12.0505 1040.85 15.39
Tail 20x20 1 1155 1267.75 9.76153 1370.99 18.7
Tail 20x20 2 1241 1386.03 11.6863 1424.07 14.75
Tail_ 20x20 3 1257 1424.63 13.3355 1406.3 11.88
Tail_20%x20_4 1248 13194 5.72081 1423.62 14.07
Tail_20%x20_5 1256 1397.88 11.2966 1485.69 18.29
Tail_20%x20_6 1204 1281.91 6.47074 1355.98 12.62
Tail_20%x20_7 1294 1442.75 11.4954 1542.63 19.21
Tail_20%x20_8 1169 1293.97 10.6902 1281.93 9.661
Tail_20x20_9 1289 1380.41 7.09122 1485.19 15.22
Tail 20x20 10 1241 1341.23 8.07672 1386.62 11.73
Average RPD % 9.218 12.79
Table 9. Experiments in Fuzzy with Parallel Fom. (1)
Problem Lower Bound DEM MEM CPL.J Limit
Cmax RPD% Cmax RPD% Time
5x5x2 1 119 127.979 7.54516 133.241 11.97 10
5x5x2 2 164 177.593 8.28822 187.071 14.07 10
5x5x2 3 123 135.179 9.90168 138.202 12.36 10
5x5%x2 4 135 147.577 9.31617 149.58 10.8 10
5x5x2 5 225 246.379 9.50176 258.334 14.82 10
10x10x3_1 406 439.241 8.18741 457.75 12.75 40
10x10x3_2 385 417.308 8.39163 432.755 12.4 40
10x10x3_3 308 338.336 9.84942 351.4 14.09 40
10x10x3_4 220 241.075 9.57977 244.08 10.95 40
10x10x3_5 315 344.734 9.4393 357.659 13.54 40
15x15%4 1 376 413.1 9.86691 422.447 12.35 90
15x15%4 2 359 403.436 12.3777 412.047 14.78 90
15x15x%4 3 408 452.204 10.8343 477.862 17.12 90
15x15x4 4 463 524.975 13.3854 527.437 13.92 90
15x15%4 5 425 467.509 10.002 479.794 12.89 90
20%x20x5 1 625 682.046 9.12741 720.544 15.29 160

20x20%5_2 535 579.805 8.3747 585.372 9.415 160
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Table 9. Continued

20x20%x5_3 598 659.51 10.2859 657.675 9.979 160
20x20%x5_4 559 605.285 8.27991 622.233 11.31 160
20x20%x5 5 620 667.136 7.60256 685.706 10.6 160
25x25%x5 1 900 967.28 7.47555 996.243 10.69 250
25x25%x5 2 935 1011.99 8.23374 1096.86 17.31 250
25x25%x5_3 1035 1107.55 7.00928 1144.27 10.56 250
25x25%x5 4 795 870.295 9.47106 930.986 17.11 250
25x25%x5 5 1072 1161.76 8.37359 1231.95 14.92 250
30x30%x5_1 1359 1457.62 7.25683 1524.04 12.14 360
30x30%x5_2 1109 1200.04 8.20957 1251.86 12.88 360
30x30%x5_3 1273 1375.01 8.01362 1452.01 14.06 360
30x30x5_4 1236 1363.56 10.3205 1400.87 13.34 360
30x30x5 5 1085 1192.99 9.95301 1245.07 14.75 360
Average RPD % 9.12073 13.05

Also we carry out an analysis of variance (ANOVASttto investigate performance two
algorithms. Table 10 shows the results of ANOVAC®Ip-value<0.05 so can be said that
there are significant difference between the tvgmalhms. Also by Fig.8 can be realized the
efficiency of the algorithm DEM.

Table 10: ANOVA: Results versus Algorithms

Source df SS MS F Ralue
Algorithms 1 234.85 234.85 71.78 0.00
Error 58 189.75 3.27
Total 59 424.60
Data Means
134
121
&
g 11
104
g L T T
DEM MEM

Figure 8: mean effect plot for algorithms

7. Conclusion and Future Research

In this paper, we presented a mixed-integer fummngramming (MIFP) approach for open
shop scheduling problem with parallel machinesaahestage to minimize makespan. Taking
fuzzy assumption the desired problem was more ipedcnd closer to the real world. We
assumed that processing times is uncertainty gmesented with triangular fuzzy number.
Since it is known as NP-hard, to solve several omadio large-sized, we proposed a novel
discrete electromagnetism-like algorithm (DEM). Ftalgorithm made use of a decoding
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procedure using a permutation list and for caloogatforce and moving particle used
crossover operators. The proposed DEM algorithm wased on a set of benchmark
problems from the literature under the circumstamsel and therm#1. We applied the
mean RPD for evaluating the performance of the Ddiydrithm. Since the value mean RPD
of the DEM under the terms af=1 andm#1 is 9.218 and 9.12073 respectively (As regards
some of this difference is due to the fuzzy natfrthe problem, because the lower bound is
obtained in crisp condition), can find out that thEM algorithm has good performance.
Also we carried out an extensive comparison ofpgieposed DEM against MEM for same
problem under a comprehensive benchmark of instanidee stopping criterion is set to a
maximum elapsed CPU time for all the evaluated rilyms. After several statistical
analyses, we can conclude that proposed methoddesothe best results for small instances
and especially for large instances.

An interesting future research direction is todgtthe fuzzy open shop with non-identical
parallel machine, and consider the problem stuthed with the addition of some other
assumption like no-wait or sequence dependent dengs, use our discrete EM to solve
other scheduling problem and think over the mugtipinctions simultaneously.
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